left join 重复数据_Python数据分析整理小节

37d4b3e943affbc74bef2579a0e4006c.png

一、数据读取

1、读写数据库数据
读取函数:

  • pandas.read_sql_table(table_name, con, schema=None, index_col=None, coerce_float=True, columns=None)
  • pandas.read_sql_query(sql, con, index_col=None, coerce_float=True)
  • pandas.read_sql(sql, con, index_col=None, coerce_float=True, columns=None)
  • sqlalchemy.creat_engine(‘数据库产品名+连接工具名://用户名:密码@数据库IP地址:数据库端口号/数据库名称?charset = 数据库数据编码’)

写出函数:

DataFrame.to_sql(name, con, schema=None, if_exists=’fail’, index=True, index_label=None, dtype=None)

2、读写文本文件/csv数据
读取函数:

  • pandas.read_table(filepath_or_buffer, sep=’t’, header=’infer’, names=None, index_col=None, dtype=None, engine=None, nrows=None)
  • pandas.read_csv(filepath_or_buffer, sep=’,’, header=’infer’, names=None, index_col=None, dtype=None, engine=None, nrows=None)

写出函数:

  • DataFrame.to_csv(path_or_buf=None, sep=’,’, na_rep=”, columns=None, header=True, index=True,index_label=None,mode=’w’,encoding=None)

3、读写excel(xls/xlsx)数据
读取函数:

  • pandas.read_excel(io, sheetname=0, header=0, index_col=None, names=None, dtype=None)

写出函数:

  • DataFrame.to_excel(excel_writer=None, sheetname=None’, na_rep=”, header=True, index=True, index_label=None, mode=’w’, encoding=None)

4、读取剪贴板数据:

pandas.read_clipboard()

二、数据预处理1、数据清洗
重复数据处理

  1. 样本重复:

pandas.DataFrame(Series).drop_duplicates(self, subset=None, keep=’first’, inplace=False)

2. 特征重复:

  • 通用
def FeatureEquals(df):dfEquals=pd.DataFrame([],columns=df.columns,index=df.columns)for i in df.columns:for j in df.columns:dfEquals.loc[i,j]=df.loc[:,i].equals(df.loc[:,j])return dfEquals
  • 数值型特征
def drop_features(data,way = 'pearson',assoRate = 1.0):'''此函数用于求取相似度大于assoRate的两列中的一个,主要目的用于去除数值型特征的重复data:数据框,无默认assoRate:相似度,默认为1'''assoMat = data.corr(method = way)delCol = []length = len(assoMat)for i in range(length):for j in range(i+1,length):if assoMat.iloc[i,j] >= assoRate:delCol.append(assoMat.columns[j])return(delCol)


缺失值处理
识别缺失值

  • DataFrame.isnull()
  • DataFrame.notnull()
  • DataFrame.isna()
  • DataFrame.notna()

处理缺失值

  • 删除:DataFrame.dropna(self, axis=0, how=’any’, thresh=None, subset=None, inplace=False)
  • 定值填补: DataFrame.fillna(value=None, method=None, axis=None, inplace=False, limit=None)
  • 插补: DataFrame.interpolate(method=’linear’, axis=0, limit=None, inplace=False,limit_direction=’forward’, limit_area=None, downcast=None,**kwargs)

异常值处理

  • 3σ原则

def outRange(Ser1): boolInd = (Ser1.mean()-3*Ser1.std()>Ser1) | (Ser1.mean()+3*Ser1.var()< Ser1) index = np.arange(Ser1.shape[0])[boolInd] outrange = Ser1.iloc[index] return outrange
注: 此方法只适用于正态分布

  • 箱线图分析
def 

2、合并数据

  • 数据堆叠:pandas.concat(objs, axis=0, join=’outer’, join_axes=None, ignore_index=False, keys=None, levels=None, names=None, verify_integrity=False, copy=True)
  • 主键合并:pandas.merge(left, right, how=’inner’, on=None, left_on=None, right_on=None, left_index=False, right_index=False, sort=False,suffixes=(‘_x’, ‘_y’), copy=True, indicator=False)
  • 重叠合并:pandas.DataFrame.combine_first(self, other)

3、数据变换

  • 哑变量处理:pandas.get_dummies(data, prefix=None, prefix_sep=’_’, dummy_na=False, columns=None, sparse=False, drop_first=False)
  • 数据离散化:pandas.cut(x, bins, right=True, labels=None, retbins=False, precision=3, include_lowest=False)

4、数据标准化

  • 标准差标准化:sklearn.preprocessing.StandardScaler
  • 离差标准化: sklearn.preprocessing.MinMaxScaler

三、模型构建1、训练集测试集划分
sklearn.model_selection.train_test_split(*arrays, **options)2、 降维
class sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False, svd_solver=’auto’, tol=0.0, iterated_power=’auto’, random_state=None)3、交叉验证
sklearn.model_selection.cross_validate(estimator, X, y=None, groups=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch=‘2*n_jobs’, return_train_score=’warn’)

4、模型训练与预测

  • 有监督模型
clf = lr.fit(X_train, y_train)
clf.predict(X_test)

5、聚类
常用算法:

  • K均值:class sklearn.cluster.KMeans(n_clusters=8, init=’k-means++’, n_init=10, max_iter=300, tol=0.0001, precompute_distances=’auto’, verbose=0, random_state=None, copy_x=True, n_jobs=1, algorithm=’auto’)
  • DBSCAN密度聚类:class sklearn.cluster.DBSCAN(eps=0.5, min_samples=5, metric=’euclidean’, metric_params=None, algorithm=’auto’, leaf_size=30, p=None, n_jobs=1)
  • Birch层次聚类:class sklearn.cluster.Birch(threshold=0.5, branching_factor=50, n_clusters=3, compute_labels=True, copy=True)

评价:

  • 轮廓系数:sklearn.metrics.silhouette_score(X, labels, metric=’euclidean’, sample_size=None, random_state=None, **kwds)
  • calinski_harabaz_score:sklearn.metrics.calinski_harabaz_score(X, labels)
  • completeness_score:sklearn.metrics.completeness_score(labels_true, labels_pred)
  • fowlkes_mallows_score:sklearn.metrics.fowlkes_mallows_score(labels_true, labels_pred, sparse=False)
  • homogeneity_completeness_v_measure:sklearn.metrics.homogeneity_completeness_v_measure(labels_true, labels_pred)
  • adjusted_rand_score:sklearn.metrics.adjusted_rand_score(labels_true, labels_pred)
  • homogeneity_score:sklearn.metrics.homogeneity_score(labels_true, labels_pred)
  • mutual_info_score:sklearn.metrics.mutual_info_score(labels_true, labels_pred, contingency=None)
  • normalized_mutual_info_score:sklearn.metrics.normalized_mutual_info_score(labels_true, labels_pred)
  • v_measure_score:sklearn.metrics.v_measure_score(labels_true, labels_pred)

注:后续含labels_true参数的均需真实值参与

6、分类
常用算法

  • Adaboost分类:class sklearn.ensemble.AdaBoostClassifier(base_estimator=None, n_estimators=50, learning_rate=1.0, algorithm=’SAMME.R’, random_state=None)
  • 梯度提升树分类:class sklearn.ensemble.GradientBoostingClassifier(loss=’deviance’, learning_rate=0.1, n_estimators=100, subsample=1.0, criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, verbose=0, max_leaf_nodes=None, warm_start=False, presort=’auto’)
  • 随机森林分类:class sklearn.ensemble.RandomForestClassifier(n_estimators=10, criterion=’gini’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False, class_weight=None)
  • 高斯过程分类:class sklearn.gaussian_process.GaussianProcessClassifier(kernel=None, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, max_iter_predict=100, warm_start=False, copy_X_train=True, random_state=None, multi_class=’one_vs_rest’, n_jobs=1)
  • 逻辑回归:class sklearn.linear_model.LogisticRegression(penalty=’l2’, dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver=’liblinear’, max_iter=100, multi_class=’ovr’, verbose=0, warm_start=False, n_jobs=1)
  • KNN:class sklearn.neighbors.KNeighborsClassifier(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)
  • 多层感知神经网络:class sklearn.neural_network.MLPClassifier(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
  • SVM:class sklearn.svm.SVC(C=1.0, kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, shrinking=True, probability=False, tol=0.001, cache_size=200, class_weight=None, verbose=False, max_iter=-1, decision_function_shape=’ovr’, random_state=None)
  • 决策树:class sklearn.tree.DecisionTreeClassifier(criterion=’gini’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, class_weight=None, presort=False)

评价:

  • 准确率:sklearn.metrics.accuracy_score(y_true, y_pred, normalize=True, sample_weight=None)
  • AUC:sklearn.metrics.auc(x, y, reorder=False)
  • 分类报告:sklearn.metrics.classification_report(y_true, y_pred, labels=None, target_names=None, sample_weight=None, digits=2)
  • 混淆矩阵:sklearn.metrics.confusion_matrix(y_true, y_pred, labels=None, sample_weight=None)
  • kappa:sklearn.metrics.cohen_kappa_score(y1, y2, labels=None, weights=None, sample_weight=None)
  • F1值:sklearn.metrics.f1_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)
  • 精确率:sklearn.metrics.precision_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)
  • 召回率:sklearn.metrics.recall_score(y_true, y_pred, labels=None, pos_label=1, average=’binary’, sample_weight=None)
  • ROC:sklearn.metrics.roc_curve(y_true, y_score, pos_label=None, sample_weight=None, drop_intermediate=True)

7、回归
常用算法:

  • Adaboost回归:class sklearn.ensemble.AdaBoostRegressor(base_estimator=None, n_estimators=50, learning_rate=1.0, loss=’linear’, random_state=None)
  • 梯度提升树回归:class sklearn.ensemble.GradientBoostingRegressor(loss=’ls’, learning_rate=0.1, n_estimators=100, subsample=1.0, criterion=’friedman_mse’, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_depth=3, min_impurity_decrease=0.0, min_impurity_split=None, init=None, random_state=None, max_features=None, alpha=0.9, verbose=0, max_leaf_nodes=None, warm_start=False, presort=’auto’)
  • 随机森林回归:class sklearn.ensemble.RandomForestRegressor(n_estimators=10, criterion=’mse’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=’auto’, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=1, random_state=None, verbose=0, warm_start=False)
  • 高斯过程回归:class sklearn.gaussian_process.GaussianProcessRegressor(kernel=None, alpha=1e-10, optimizer=’fmin_l_bfgs_b’, n_restarts_optimizer=0, normalize_y=False, copy_X_train=True, random_state=None)
  • 保序回归:class sklearn.isotonic.IsotonicRegression(y_min=None, y_max=None, increasing=True, out_of_bounds=’nan’)
  • Lasso回归:class sklearn.linear_model.Lasso(alpha=1.0, fit_intercept=True, normalize=False, precompute=False, copy_X=True, max_iter=1000, tol=0.0001, warm_start=False, positive=False, random_state=None, selection=’cyclic’)
  • 线性回归:class sklearn.linear_model.LinearRegression(fit_intercept=True, normalize=False, copy_X=True, n_jobs=1)
  • 岭回归: class sklearn.linear_model.Ridge(alpha=1.0, fit_intercept=True, normalize=False, copy_X=True, max_iter=None, tol=0.001, solver=’auto’, random_state=None)
  • KNN回归:class sklearn.neighbors.KNeighborsRegressor(n_neighbors=5, weights=’uniform’, algorithm=’auto’, leaf_size=30, p=2, metric=’minkowski’, metric_params=None, n_jobs=1, **kwargs)
  • 多层感知神经网络回归:class sklearn.neural_network.MLPRegressor(hidden_layer_sizes=(100, ), activation=’relu’, solver=’adam’, alpha=0.0001, batch_size=’auto’, learning_rate=’constant’, learning_rate_init=0.001, power_t=0.5, max_iter=200, shuffle=True, random_state=None, tol=0.0001, verbose=False, warm_start=False, momentum=0.9, nesterovs_momentum=True, early_stopping=False, validation_fraction=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08)
  • SVM回归:class sklearn.svm.SVR(kernel=’rbf’, degree=3, gamma=’auto’, coef0=0.0, tol=0.001, C=1.0, epsilon=0.1, shrinking=True, cache_size=200, verbose=False, max_iter=-1)
  • 决策树回归:class sklearn.tree.DecisionTreeRegressor(criterion=’mse’, splitter=’best’, max_depth=None, min_samples_split=2, min_samples_leaf=1, min_weight_fraction_leaf=0.0, max_features=None, random_state=None, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, presort=False)

评价:

  • 可解释方差值:sklearn.metrics.explained_variance_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
  • 平均绝对误差:sklearn.metrics.mean_absolute_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)[source]
  • 均方误差:sklearn.metrics.mean_squared_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
  • 均方对数误差:sklearn.metrics.mean_squared_log_error(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)
  • 中值绝对误差:sklearn.metrics.median_absolute_error(y_true, y_pred)
  • R²值:sklearn.metrics.r2_score(y_true, y_pred, sample_weight=None, multioutput=’uniform_average’)

八、demo

 from sklearn import neighbors, datasets, preprocessingfrom sklearn.cross_validation import train_test_splitfrom sklearn.metrics import accuracy_scoreiris = datasets.load_iris()X, y = iris.data, iris.targetX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=33)scaler = preprocessing.StandardScaler().fit(X_train)X_train = scaler.transform(X_train)X_test = scaler.transform(X_test)knn = neighbors.KNeighborsClassifier(n_neighbors=5)knn.fit(X_train, y_train)y_pred = knn.predict(X_test)accuracy_score(y_test, y_pred)

四、绘图

e8ebedfb600d4fb7c11be5bc02127625.png

3、中文

plt.rcParams['font.sans-serif'] = 'SimHei' ##设置字体为SimHei显示中文
plt.rcParams['axes.unicode_minus'] = False ##设置正常显示符号

4、不同图形

  • 散点图:matplotlib.pyplot.scatter(x, y, s=None, c=None, marker=None, cmap=None, norm=None, vmin=None, vmax=None, alpha=None, linewidths=None, verts=None, edgecolors=None, hold=None, data=None,**kwargs)
  • 折线图: matplotlib.pyplot.plot(*args, **kwargs)
  • 直方图:matplotlib.pyplot.bar(left,height,width = 0.8,bottom = None,hold = None,data = None,** kwargs )
  • 饼图:matplotlib.pyplot.pie(x, explode=None, labels=None, colors=None, autopct=None, pctdistance=0.6, shadow=False, labeldistance=1.1, startangle=None, radius=None, counterclock=True, wedgeprops=None, textprops=None, center=(0, 0), frame=False, hold=None, data=None)
  • 箱线图:matplotlib.pyplot.boxplot(x, notch=None, sym=None, vert=None, whis=None, positions=None, widths=None, patch_artist=None, bootstrap=None, usermedians=None, conf_intervals=None, meanline=None, showmeans=None, showcaps=None, showbox=None, showfliers=None, boxprops=None, labels=None, flierprops=None, medianprops=None, meanprops=None, capprops=None, whiskerprops=None, manage_xticks=True, autorange=False, zorder=None, hold=None, data=None)

5、Demo

import numpy as np
import matplotlib.pyplot as pltbox = dict(facecolor='yellow', pad=5, alpha=0.2)fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2)
fig.subplots_adjust(left=0.2, wspace=0.6)# Fixing random state for reproducibility
np.random.seed(19680801)ax1.plot(2000*np.random.rand(10))
ax1.set_title('ylabels not aligned')
ax1.set_ylabel('misaligned 1', bbox=box)
ax1.set_ylim(0, 2000)ax3.set_ylabel('misaligned 2',bbox=box)
ax3.plot(np.random.rand(10))labelx = -0.3  # axes coordsax2.set_title('ylabels aligned')
ax2.plot(2000*np.random.rand(10))
ax2.set_ylabel('aligned 1', bbox=box)
ax2.yaxis.set_label_coords(labelx, 0.5)
ax2.set_ylim(0, 2000)ax4.plot(np.random.rand(10))
ax4.set_ylabel('aligned 2', bbox=box)
ax4.yaxis.set_label_coords(labelx, 0.5)plt.show()

五、完整Demo

import numpy as np
import pandas as pd
airline_data = pd.read_csv("../data/air_data.csv",encoding="gb18030") #导入航空数据
print('原始数据的形状为:',airline_data.shape)## 去除票价为空的记录
exp1 = airline_data["SUM_YR_1"].notnull()
exp2 = airline_data["SUM_YR_2"].notnull()
exp = exp1 & exp2
airline_notnull = airline_data.loc[exp,:]
print('删除缺失记录后数据的形状为:',airline_notnull.shape)#只保留票价非零的,或者平均折扣率不为0且总飞行公里数大于0的记录。
index1 = airline_notnull['SUM_YR_1'] != 0
index2 = airline_notnull['SUM_YR_2'] != 0
index3 = (airline_notnull['SEG_KM_SUM']> 0) & (airline_notnull['avg_discount'] != 0)  
airline = airline_notnull[(index1 | index2) & index3]
print('删除异常记录后数据的形状为:',airline.shape)airline_selection = airline[["FFP_DATE","LOAD_TIME","FLIGHT_COUNT","LAST_TO_END","avg_discount","SEG_KM_SUM"]]
## 构建L特征
L = pd.to_datetime(airline_selection["LOAD_TIME"]) - 
pd.to_datetime(airline_selection["FFP_DATE"])
L = L.astype("str").str.split().str[0]
L = L.astype("int")/30
## 合并特征
airline_features = pd.concat([L,airline_selection.iloc[:,2:]],axis = 1)
print('构建的LRFMC特征前5行为:n',airline_features.head())from sklearn.preprocessing import StandardScaler
data = StandardScaler().fit_transform(airline_features)
np.savez('../tmp/airline_scale.npz',data)
print('标准化后LRFMC五个特征为:n',data[:5,:])from sklearn.cluster import KMeans #导入kmeans算法
airline_scale = np.load('../tmp/airline_scale.npz')['arr_0']
k = 5 ## 确定聚类中心数#构建模型
kmeans_model = KMeans(n_clusters = k,n_jobs=4,random_state=123)
fit_kmeans = kmeans_model.fit(airline_scale)   #模型训练
kmeans_model.cluster_centers_ #查看聚类中心kmeans_model.labels_ #查看样本的类别标签#统计不同类别样本的数目
r1 = pd.Series(kmeans_model.labels_).value_counts()
print('最终每个类别的数目为:n',r1)#绘制直方图矩阵
center = kmeans_model.cluster_centers_ 
names = ['入会时长','最近乘坐过本公司航班','乘坐次数','里程','平均折扣率']
import matplotlib.pyplot as plt
%matplotlib inline
ax = plt.figure(figsize=(8,8))
for i in range(k):ax1 = ax.add_subplot(k,1,i+1)plt.bar(range(5),center[:,i],width = 0.5)plt.xlabel('类别')plt.ylabel(names[i])
plt.savefig('聚类分析柱形图.png')
plt.show()#绘制雷达图
fig = plt.figure(figsize=(8,8))
ax = fig.add_subplot(111, polar=True)# polar参数
angles = np.linspace(0, 2*np.pi, k, endpoint=False)
angles = np.concatenate((angles, [angles[0]])) # 闭合
Linecolor = ['bo-','r+:','gD--','yv-.','kp-'] #点线颜色
Fillcolor = ['b','r','g','y','k']
for i in range(k):data = np.concatenate((center[i], [center[i][0]])) # 闭合ax.plot(angles,data,Linecolor[i], linewidth=2)# 画线ax.fill(angles, data, facecolor=Fillcolor[i], alpha=0.25)# 填充
ax.set_thetagrids(angles * 180/np.pi, names)
ax.set_title("客户分群雷达图", va='bottom')## 设定标题
ax.set_rlim(-1,3)## 设置各指标的最终范围
ax.grid(True)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/552136.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

win10文件显示后缀名_Win10一开机,内存占用竟高达60%?你可以尝试这样做

说到win10一开机&#xff0c;内存占用竟高达60%&#xff0c;你是怎么处理的呢&#xff1f;深受其害的朋友就此大展身手了&#xff0c;瞅瞅&#xff01;A&#xff1a;我16G内存&#xff0c;也是开机占用了70%多。百度找了很多方法都是不相关的答案&#xff0c;后来发现了关闭快速…

LSTM(长短期记忆网络)的设计灵感和数学表达式

1、设计灵感 LSTM&#xff08;长短期记忆网络&#xff09;的设计灵感来源于传统的人工神经网络在处理序列数据时存在的问题&#xff0c;特别是梯度消失和梯度爆炸的问题。 在传统的RNN&#xff08;循环神经网络&#xff09;中&#xff0c;信息在网络中的传递是通过隐状态向量进…

个人博客代码_Jekyll + Github Pages 搭建个人免费博客

今天亲手通过 Jekyll 搭建了一套免费博客&#xff0c;搭建步骤其实超级简单。你不需要购买域名&#xff0c;也不需要购买服务器&#xff0c;就可以轻松拥有你自己的博客。Jekyll 的核心是一个文本转换引擎。它的方便之处在于支持多种文本标记语言&#xff1a;Markdown&#xff…

js计算排名_今天,我们讲一下,快速排名与黑帽SEO

做个有心人(第7篇)在Web3.0时代&#xff0c;想要获得流量&#xff0c;就必须使用广告手段&#xff0c;用什么广告手段&#xff0c;需要切合自身情况来做&#xff0c;比如说&#xff1a;SEO是免费的&#xff0c;而SEM就是付费的。而SEO快速排名是什么鬼?真的快吗?快速排名究竟…

黑马h5学习代码_如何零基础制作酷炫实用的H5页面

H5页面已经成为了当下移动端主要的宣传方式,一个好的H5页面有极高的营销价值,无论是企业还是个人都非常需要。制作一个炫酷的H5页面一定要会写代码吗,下面千锋网络营销小编就给大家分享如何零基础制作炫酷实用的H5页面。支持H5的Web APP迅猛发展很重要的一点就是APP中的内容产生…

bin文件如何编辑_如何为高通固件创建rawprogram0和patch0文件

这是一个分步教程&#xff0c;显示如何为Qualcomm固件创建rawprogram0.xml和patch0.xml文件。要求下载并安装Python https://www.python.org/downloads/release/python-2710/下载高通GPTtool [ 登录/注册免费下载]下载Notepad https://notepad-plus-plus.org/downloads/来自…

iframe 页面富文本框数据怎么保存_文字太多PPT怎么做都丑?估计是没注意这些细节!...

秋叶 PPT 双 11 大促返场最后 1 天全场精品课享年度超值价千万别错过啦&#xff01;作者&#xff1a;洁洁编辑&#xff1a;躺糖大家好&#xff0c;我是洁洁&#xff01;作为每天倾听你们的困惑的小编之一&#xff0c;我 get 到了一个你们平常做 PPT 会碰到的最头疼的问题&#…

835 由于安全层无法对远程计算机进行身份验证_vscode 插件Remote-ssh远程wsl调试python

解决远程ssh端口非22的问题&#xff0c;见文末参考文献&#xff1a;Developing on Remote Machines using SSH and Visual Studio Code​code.visualstudio.com使用SSH进行远程开发Developing on Remote Machines using SSH and Visual Studio Code使用SSH进行远程开发在Visual…

vue实现查询多条记录_vue.js 实现天气查询

效果预览&#xff1a;http://songothao.gitee.io/weather_query_based_on_vuejs/ 项目已上传码云&#xff1a;叁贰壹/vuejs实现天气查询知乎视频​www.zhihu.com一、使用 axios vue.js:axios-get请求&#xff1a;axios.get(地址?keyvalue&key2value2).then(function(resp…

idea序列化自动生成_serialVersionUID在数据序列化中重要性

作用用于判断序列化文件是否已经失效(过期)。序列化的时候会把这个ID写到文件里。读的时候会把这个ID和代码里的ID比较&#xff0c;如果不一致&#xff0c;表示文件里的已经失效。(will result in an InvalidClassException.)值写为多少你可以写为1L&#xff0c;也可以让IDEA帮…

python找与7相关的数_用python统计并输出1000以内所有能同时被3和7整除的数的个数?...

展开全部 len([i for i in range(1,1001) if i%3i%70]) #!/usr/bin/python3 for i in range(1, 100): if i % 3 0 and i % 7 0: print(i) 100以内能同时被21133&#xff0c;5&#xff0c;7整除的数&#xff0c;除非是52610。 #include int main() {int i,n0; for(i0;i<100…

贝塞尔曲线 java_贝塞尔曲线理论及实现——Java篇

贝塞尔曲线贝塞尔曲线(The Bzier Curves)&#xff0c;是一种在计算机图形学中相当重要的参数曲线(2D&#xff0c;3D的称为曲面)。贝塞尔曲线于1962年&#xff0c;由法国工程师皮埃尔贝塞尔(Pierre Bzier)所发表&#xff0c;他运用贝塞尔曲线来为汽车的主体进行设计。线性曲线给…

java连接access_关于k8s下使用Ingress保持长连接的异常情况排查

写在前面的话应某位友人需求&#xff0c;帮整理下工作中的发生的一些值得记录的文章。于是在友人描述后&#xff0c;为其整理为了文章&#xff0c;供大家一起参考探讨。问题描述在我们中应用有一个使用到Http Long Poll的场景&#xff0c;它需要一个http请求保持最长30秒&#…

罗斯蒙特电磁流量计8723说明书_罗斯蒙特8732E电磁流量计对环境和温度的限制

今天我们来说说美国罗斯蒙特8732E电磁流量计对环境和温度的限制&#xff01;工作温度-40 到 60C(-40 到 140F)&#xff0c;无本地操作界面-20 到 60C(-4 到 140F)&#xff0c;有本地操作界面当温度低于 -20C 时&#xff0c;本地操作界面 (LOI) 将无显示储存-40 到 85C(-40 到 1…

python字符串定义符_python入门——定义字符串

坚持每天更新&#xff0c;帮助入门python。kali linux 小伙伴们&#xff0c;大家好&#xff0c;今下午我们一起学习在python中定义字符串。 那么什么是字符串呢&#xff1f;字符串或串(String)是由数字、字母、下划线组成的一串字符。说白了&#xff0c;就是一堆字符。 在pytho…

耳机不分主从是什么意思_开学必备高性价蓝牙耳机,学生党时尚配件推荐

耳机自从手机出世之后就一直伴随着我们&#xff0c;作为手机的最佳搭档被我们使用&#xff0c;像现如今流行的蓝牙耳机我们就经常使用&#xff0c;大学生也是差不多每天都用得着&#xff0c;听歌、散步、玩游戏、看剧等哪都看得到它的身影&#xff0c;当然蓝牙耳机价格也有高低…

11g java 驱动_Oracle 11g Java驱动包ojdbc6.jar安装到maven库,并查看jar具体版本号

ojdbc6.jar下载Oracle官方宣布的Oracle数据库11g的驱动jar包是ojdbc6.jarojdbc6.jar下载地址&#xff1a;https://www.oracle.com/technetwork/database/enterprise-edition/jdbc-112010-090769.html (Oracle Database 11g Release 2 (11.2.0.4) JDBC Drivers & UCP Downlo…

功放音量调节原理_玩汽车音响,功放和喇叭,应该如何做好匹配?

原标题&#xff1a;玩汽车音响&#xff0c;功放和喇叭&#xff0c;应该如何做好匹配&#xff1f;功放和喇叭搭配使用&#xff0c;离不开合理匹配&#xff0c;那么如何做好两者匹配呢&#xff1f;功放和喇叭要做到三匹配&#xff1a;阻抗匹配、功率匹配和工作频率匹配。只有这样…

java seekbar_SeekBar的基本使用方法

a)什么是SeekBarb)使用SeekBar的步骤:i.在布局文件当中声明SeekBar: ii.定义一个OnSeekBarChangeListener: private class SeekBarListener implements SeekBar.OnSeekBarChangeListener{public void onProgressChanged(SeekBar seekBar,int progress,Boolean fromUser){System…