【论文笔记】KDD2019 | KGAT: Knowledge Graph Attention Network for Recommendation

在这里插入图片描述

Abstract

为了更好的推荐,不仅要对user-item交互进行建模,还要将关系信息考虑进来

传统方法因子分解机将每个交互都当作一个独立的实例,但是忽略了item之间的关系(eg:一部电影的导演也是另一部电影的演员)

高阶关系:用一个/多个链接属性连接两个item

KG+user-item graph+high order relations—>KGAT

递归传播邻域节点(可能是users、items、attributes)的嵌入来更新自身节点的嵌入,并使用注意力机制来区分邻域节点的重要性

Introduction

在这里插入图片描述

u 1 u_1 u1是要向其提供推荐的目标用户。黄色圆圈和灰色圆圈表示通过高阶关系发现但被传统方法忽略的重要用户和项目。

例如,用户 u 1 u_1 u1看了 电影 i 1 i_1 i1,CF方法侧重于同样观看了 i 1 i_1 i1的相似用户的历史,即 u 4 u_4 u4 u 5 u_5 u5,而监督学习侧重于与 i 1 i_1 i1有相同属性 e 1 e_1 e1的电影 i 2 i_2 i2,显然,这两种信息对于推荐是互补的,但是现有的监督学习未能将这两者统一起来,比如说这里 i 1 i_1 i1 i 2 i_2 i2 r 2 r_2 r2属性都是 e 1 e_1 e1,但是它无法通过 r 3 r_3 r3到达 i 3 i_3 i3 i 4 i_4 i4,因为它把它们当成了独立的部分,无法考虑到数据中的高阶关系,比如黄色圈中的用户看了同一个导演 e 1 e_1 e1的其他电影 i 2 i_2 i2,或者灰色圈中的电影也与 e 1 e_1 e1有其他的关系。这些也是作出推荐的重要信息。
u 1 ⟶ r 1 i 1 ⟶ − r 2 e 1 ⟶ r 2 i 2 ⟶ − r 1 { u 2 , u 3 } , u 1 ⟶ r 1 i 1 ⟶ − r 2 e 1 ⟶ r 3 { i 3 , i 4 } , \begin{array}{l} u_{1} \stackrel{r_{1}}{\longrightarrow} i_{1} \stackrel{-r_{2}}{\longrightarrow} e_{1} \stackrel{r_{2}}{\longrightarrow} i_{2} \stackrel{-r_{1}}{\longrightarrow}\left\{u_{2}, u_{3}\right\}, \\ u_{1} \stackrel{r_{1}}{\longrightarrow} i_{1} \stackrel{-r_{2}}{\longrightarrow} e_{1} \stackrel{r_{3}}{\longrightarrow}\left\{i_{3}, i_{4}\right\}, \end{array} u1r1i1r2e1r2i2r1{u2,u3},u1r1i1r2e1r3{i3,i4},

存在问题

利用这种高阶信息是存在挑战的:

1) 与目标用户具有高阶关系的节点随着阶数的增加而急剧增加,这给模型带来了计算压力

2) 高阶关系对预测的贡献不均衡。

为此,论文提出了 Knowledge Graph Attention Network (KGAT) 的模型,它基于节点邻居的嵌入来更新节点的嵌入,并递归地执行这种嵌入传播,以线性时间复杂度捕获高阶连接。另外采用注意力机制来学习传播期间每个邻居的权重。

GNN->KGAT

1、递归嵌入传播,用领域节点嵌入来更新当前节点嵌入

2、使用注意力机制,来学习传播期间每个邻居的权重

优点:

1、与基于路径的方法相比,避免了人工标定路径

2、与基于规则的方法相比,将高阶关系直接融入预测模型

3. 模型框架

在这里插入图片描述

3.1 问题定义

Input:协同知识图 G \mathcal G G G \mathcal G G由user-item交互数据 G 1 \mathcal G_1 G1和知识图 G 2 \mathcal G_2 G2组成

Output:user u u u点击 item i i i的概率 y ^ u i \hat y_{ui} y^ui

高阶连接:利用高阶连接对于执行高质量的推荐是至关重要的。我们将 L L L阶连接 ( L L L- order connectivtiy) 定义为一个多跳关系路径:
e 0 ⟶ r 1 e 1 ⟶ r 2 . . . ⟶ r L e L e_0 \stackrel {r_1}{\longrightarrow} e_1 \stackrel {r_2}{\longrightarrow} \ ... \ \stackrel {r_L}{\longrightarrow} e_L\\ e0r1e1r2 ... rLeL

3.2 Embedding Layer

论文在知识图嵌入方面使用了TransR模型,它的主要思想是不同的实体在不同的关系下有着不同的含义,所以需要将实体投影到特定关系空间中,假如 h h h t t t具有 r r r关系,那么它们在 r r r关系空间的表示应该接近,否则应该远离,用公式表达则是:
e h r + e r ≈ e t r \mathbf e_h^r + \mathbf e_r \approx \mathbf e_t^r \\ ehr+eretr
这里 e h , e t ∈ R d \mathbf e_h, \mathbf e_t \in \mathbb R^d eh,etRd, e r ∈ R k \mathbf e_r \in \mathbb R^k erRk h , t , r h ,t ,r htr的embedding。

它的得分为:
g ( h , r , t ) = ∣ ∣ W r e h + e r − W r e t ∣ ∣ 2 2 g(h,r,t)=||\mathbf W_r\mathbf e_h+\mathbf e_r-\mathbf W_r\mathbf e_t||_2^2\\ g(h,r,t)=∣∣Wreh+erWret22
其中 W r ∈ R k × d \mathbf W_r \in \mathbb R^{k\times d} WrRk×d是关系 r r r的转换矩阵,将实体从 d d d维实体空间投影到 k k k维关系空间中。 g ( h , r , t ) g(h,r,t) g(h,r,t)的值越低,说明该三元组为真的概率越大。

最后,用pairwise ranking loss来衡量效果:
L K G = ∑ ( h , r , t , t ′ ) ∈ τ − l n σ ( g ( h , r , t ′ ) − g ( h , r , t ) ) \mathcal L_{KG} = \sum_{(h,r,t,t^{'})\in \tau} -ln \ \sigma(g(h,r,t^{'})-g(h,r,t))\\ LKG=(h,r,t,t)τln σ(g(h,r,t)g(h,r,t))
此式子的意思就是让负样本的值减去正样本的值尽可能的大。负样本的选择就是将 t t t随机替换成一个别的。

3.3 Attentive Embedding Propagation Layers

信息传播

考虑实体 h h h,我们使用 N h = { ( h , r , t ) ∣ ( h , r , t ) ∈ G } \mathcal N_h = \{ (h,r,t)|(h,r,t) \in \mathcal G\} Nh={(h,r,t)(h,r,t)G}表示那些以 h h h为头实体的三元组。计算 h h h的ego-network:
e N h = ∑ ( h , r , t ) ∈ N h π ( h , r , t ) e t \mathbf e_{\mathcal N_h} = \sum _ {(h,r,t) \in \mathcal N_h} \pi(h,r,t) \mathbf e_t\\ eNh=(h,r,t)Nhπ(h,r,t)et
π ( h , r , t ) \pi(h,r,t) π(h,r,t)表示在关系 r r r下从 t t t传到 h h h的信息量。

知识感知注意力

信息传播中的权重 π ( h , r , t ) \pi(h,r,t) π(h,r,t)是通过注意力机制实现的
π ( h , r , t ) = ( W r e t ) T t a n h ( W r e h + e r ) \pi(h,r,t) = (\mathbf W_r \mathbf e_t)^Ttanh(\mathbf W_r \mathbf e_h+\mathbf e_r)\\ π(h,r,t)=(Wret)Ttanh(Wreh+er)
这里使用 t a n h tanh tanh作为激活函数可以使得在关系空间中越接近的 e h \mathbf e_h eh e t \mathbf e_t et有更高的注意力分值。采用 s o f t m a x softmax softmax归一化:
π ( h , r , t ) = e x p ( π ( h , r , t ) ) ∑ ( h , r ′ , t ′ ) ∈ N h e x p ( π ( h , r ′ , t ′ ) ) \pi(h,r,t)=\frac{exp(\pi(h,r,t))}{\sum_{(h,r^{'},t^{'}) \in \mathcal N_h} exp(\pi(h,r^{'},t^{'}))}\\ π(h,r,t)=(h,r,t)Nhexp(π(h,r,t))exp(π(h,r,t))
最终凭借 π ( h , r , t ) \pi(h,r,t) π(h,r,t)我们可以知道哪些邻居节点应该被给予更多的关注。

信息聚合

最终将 h h h在实体空间中的表示 e h \mathbf e_h eh和其ego-network的表示 e N h \mathbf e_{\mathcal N_h} eNh聚合起来作为 h h h的新表示:
e h ( 1 ) = f ( e h , e N h ) \mathbf e_h^{(1)} = f(\mathbf e_h,\mathbf e_{\mathcal N_h})\\ eh(1)=f(eh,eNh)
f ( ⋅ ) f(·) f()有以下几种方式:

  1. GCN Aggregator:
    f G C N = L e a k y R e L U ( W ( e h + e N h ) ) f_{GCN}=LeakyReLU(\mathbf W(\mathbf e_h+\mathbf e_{\mathcal N_h})) fGCN=LeakyReLU(W(eh+eNh))
  2. GraphSage Aggregator:
    f G r a p h S a g e = L e a k y R e L U ( W ( e h ∣ ∣ e N h ) ) f_{GraphSage} = LeakyReLU( \mathbf W(\mathbf e_h || \mathbf e_{\mathcal N_h})) fGraphSage=LeakyReLU(W(eh∣∣eNh))
  3. Bi-Interaction Aggregator:
    f B i − I n t e r a c t i o n = L e a k y R e L U ( W 1 ( e h + e N h ) ) + L e a k y R e L U ( W 2 ( e h ⊙ e N h ) ) f_{Bi-Interaction} = LeakyReLU(\mathbf W_1(\mathbf e_h+\mathbf e_{\mathcal N_h}))+LeakyReLU(\mathbf W_2(\mathbf e_h\odot\mathbf e_{\mathcal N_h})) fBiInteraction=LeakyReLU(W1(eh+eNh))+LeakyReLU(W2(eheNh))

高阶传播:

我们可以进一步堆叠更多的传播层来探索高阶连通信息,收集从更高跳邻居传播过来的信息,所以在 l l l步中:
e h ( l ) = f ( e h ( l − 1 ) , e N h ( l − 1 ) ) \mathbf e_h^{(l)} = f( \mathbf e_h^{(l-1)},\mathbf e_{\mathcal N_h}^{(l-1)})\\ eh(l)=f(eh(l1),eNh(l1))
其中 e N h ( l − 1 ) = ∑ ( h , r , t ) ∈ N h π ( h , r , t ) e t ( l − 1 ) \mathbf e_{\mathcal N_h}^{(l-1)} = \sum_{(h,r,t) \in \mathcal N_h} \pi(h,r,t)\mathbf e_t^{(l-1)} eNh(l1)=(h,r,t)Nhπ(h,r,t)et(l1),而 e t ( l − 1 ) \mathbf e_t^{(l-1)} et(l1)也是通过上面的步骤从 e t 0 \mathbf e_t^0 et0得到的。

3.4 Prediction layer

在执行 L L L层后,最终我们会得到用户 u u u的多层表示: { e u ( 1 ) , . . . , e u ( L ) } \{\mathbf e_u^{(1)},...,\mathbf e_u^{(L)} \} {eu(1),...,eu(L)},以及item i i i的多层表示: { e i ( 1 ) , . . , e i ( L ) } \{\mathbf e_i^{(1)},..,\mathbf e_i^{(L)} \} {ei(1),..,ei(L)}

将其连接起来,即:
e u ∗ = e u ( 0 ) ∣ ∣ . . . ∣ ∣ e u ( L ) , e i ∗ = e i ( 0 ) ∣ ∣ . . . ∣ ∣ e i ( L ) \mathbf e_u^{*} = \mathbf e_u^{(0)} || ...||\mathbf e_u^{(L)} \ ,\ \mathbf e_i^{*} = \mathbf e_i^{(0)} || ...||\mathbf e_i^{(L)} \\ eu=eu(0)∣∣...∣∣eu(L) , ei=ei(0)∣∣...∣∣ei(L)
最后通过内积计算相关分数:
y ^ ( u , i ) = e u ∗ T e i ∗ \hat y(u,i) = {\mathbf e_u^*}^T \mathbf e_i^*\\ y^(u,i)=euTei

3.5 损失函数

损失函数使用了BPR loss:
L C F = ∑ ( u , i , j ) ∈ O − l n σ ( y ^ ( u , i ) − y ^ ( u , j ) ) \mathcal L_{CF}=\sum_{(u,i,j) \in O} - ln \ \sigma(\hat y(u,i)-\hat y(u,j))\\ LCF=(u,i,j)Oln σ(y^(u,i)y^(u,j))
其中 O = { ( u , i , j ) ∣ ( u , i ) ∈ R + , ( u , j ) ∈ R − } O = \{(u,i,j)|(u,i) \in \mathcal R^+, (u,j) \in \mathcal R^- \} O={(u,i,j)(u,i)R+,(u,j)R} R + \mathcal R^+ R+表示正样本, R − \mathcal R^- R表示负样本。

最终:
L K G A T = L K G + L C F + λ ∣ ∣ Θ ∣ ∣ 2 2 \mathcal L_{KGAT} = \mathcal L_{KG} + \mathcal L_{CF} + \lambda||\Theta||_2^2\\ LKGAT=LKG+LCF+λ∣∣Θ∣22

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5520.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

醉梦仙踪:二叉树狂想曲,中序遍历的华丽穿梭

本篇博客会讲解力扣“94. 二叉树的中序遍历”的解题思路,这是题目链接。 如何对二叉树进行中序遍历呢?所谓中序遍历,即先遍历左子树,接着遍历根节点,最后遍历右子树的一种遍历方式。具体来说,假设有某一种“…

htmlCSS-----背景样式

目录 前言: 背景样式 1.背景颜色 background-color 2.背景图片 background-image 背景的权重比较 代码示例: 前言: 很久没写文章了,会不会想我呢!今天我们开始学习html和CSS的背景样式以及文字样式&#xff…

qt 5.12.6配置 msvc2015 32bit

qt 5.12.6配置 msvc2015 32bit 1.添加临时档案库2.安装 msvc20153. 配置 qmake 环境4.修改系统环境变量5.问题修改1.qt没有被正确的安装,请运行make install2.QT编译出错:rc不是内部或外部命令,也不是可运行的程序 或批处理文件。3.QT License check fai…

【Selenium+Pytest+allure报告生成自动化测试框架】附带项目源码和项目部署文档

目录 前言 【文章末尾给大家留下了大量的福利】 测试框架简介 首先管理时间 添加配置文件 conf.py config.ini 读取配置文件 记录操作日志 简单理解POM模型 简单学习元素定位 管理页面元素 封装Selenium基类 创建页面对象 简单了解Pytest pytest.ini 编写测试…

php使用PDO_sqlsrv

php拓展下载:Microsoft Drivers for PHP 发行说明 - PHP drivers for SQL Server | Microsoft Learn 参考文章:php7.3.4 pdo方式连接sqlserver 设置方法_pdo sqlserver_黑贝是条狗的博客-CSDN博客 php5.6.9安装sqlsrv扩展(windows&#xff0…

CXL Bias Mode (1) - Bias Mode 背景与分类

🔥点击查看精选 CXL 系列文章🔥 🔥点击进入【芯片设计验证】社区,查看更多精彩内容🔥 📢 声明: 🥭 作者主页:【MangoPapa的CSDN主页】。⚠️ 本文首发于CSDN&#xff0c…

SUSE宣布推出免费RHEL分叉以保留企业级Linux的选择权

导读在Red Hat宣布将限制AlmaLinuxOS或Rocky Linux等社区发行版对其公共仓库的访问后,最近Red Hat与IBM之间发生了一些争论,有鉴于此,SUSE今天宣布计划为RHEL和CentOS用户提供一个免费的替代方案。 SUSE已经开发了SUSE Linux Enterprise (SLE…

【问题记录】Ubuntu 22.04 环境下,打开 VS Code 老是访问密钥环该怎么解决?

目录 环境 问题情况 解决方法 环境 VMware Workstation 16 Pro (版本:16.1.2 build-17966106)ubuntu-22.04.2-desktop-amd64 问题情况 在Ubuntu下,每次运行 VS Code时,老是提示要输入密钥密码来解锁保存在密钥环&am…

C语言程序运行需要的两大环境《C语言进阶》

目录 程序的翻译环境和执行环境 翻译环境分为两部分,编译链接 第一步:预编译(预处理) 第二步,编译 第三步:汇编 关于运行环境分为四点: 关于链接库 程序的翻译环境和执行环境 在 ANSI C(标…

【全面解析】Windows 如何使用 SSH 密钥远程连接 Linux 服务器

创建密钥 创建 linux 服务器端的终端中执行命令 ssh-keygen,之后一直按Enter即可,这样会在将在 ~/.ssh/ 路径下生成公钥(id_rsa.pub)和私钥(id_rsa) 注意:也可以在 windows 端生成密钥,只需要保证公钥在服务器端,私钥…

Apache Struts2漏洞复现之s2-001漏洞复现

0x01 声明: 仅供学习参考使用,请勿用作违法用途,否则后果自负。 0x02 简介: Apache Struts 2是一个用于开发Java EE网络应用程序的开放源代码网页应用程序架构。它利用并延伸了Java ServletAPI,鼓励开发者采用MVC架构…

Android ObjectBox数据库的使用与详解

一、介绍 Room数据库 之前我已介绍了jetpack组件的数据库:Room,有小伙伴需要了解Room数据库可以查看这个地址:Android JetPack组件之Room数据库的集成与详解_android room数据库_蜗牛、Z的博客-CSDN博客 数据库的性能对设备来说很重要&#…

安全开发-JS应用原生开发JQuery库Ajax技术加密编码库断点调试逆向分析元素属性操作

文章目录 JS原生开发-文件上传-变量&对象&函数&事件JS导入库开发-登录验证-JQuery库&Ajax技术JS导入库开发-编码加密-逆向调试 JS原生开发-文件上传-变量&对象&函数&事件 1、布置前端页面 2、JS获取提交数据 3、JS对上传格式判断 <script>…

抖音seo开源源码,抖音优化系统定制方案

抖音作为目前最火热的短视频平台之一&#xff0c;其在移动互联网领域的影响越来越大。然而&#xff0c;一款成功的产品未必仅仅靠着其自身的功能和品质就能获得市场的认可&#xff0c;还需要通过优化SEO来实现更好的曝光率。下面&#xff0c;本文将介绍如何优化抖音SEO源码开发…

Vue3通透教程【十六】TS编译配置

文章目录 &#x1f31f; 写在前面&#x1f31f; 初始化配置文件⭐ target⭐ module⭐ lib⭐ types/node⭐ include⭐ outDir&#x1f31f; 写在最后 &#x1f31f; 写在前面 专栏介绍&#xff1a; 凉哥作为 Vue 的忠实 粉丝输出过大量的 Vue 文章&#xff0c;应粉丝要求开始更…

【英杰送书第三期】Spring 解决依赖版本不一致报错 | 文末送书

Yan-英杰的主 悟已往之不谏 知来者之可追 C程序员&#xff0c;2024届电子信息研究生 目录 问题描述 报错信息如下 报错描述 解决方法 总结 【粉丝福利】 【文末送书】 目录&#xff1a; 本书特色&#xff1a; 问题描述 报错信息如下 Description:An attempt…

Data Transfer Object-DTO,数据传输对象,前端参数设计多个数据表对象

涉及两张表的两个实体对象 用于在业务逻辑层和持久层&#xff08;数据库访问层&#xff09;之间传输数据。 DTO的主要目的是将多个实体&#xff08;Entity&#xff09;的部分属性或多个实体关联属性封装成一个对象&#xff0c;以便在业务层进行数据传输和处理&#xff0c;从而…

Python 算法基础篇:冒泡排序和选择排序

Python 算法基础篇&#xff1a;冒泡排序和选择排序 引言 1. 冒泡排序算法概述2. 冒泡排序算法实现实例1&#xff1a;冒泡排序 3. 选择排序算法概述4. 选择排序算法实现实例2&#xff1a;选择排序 5. 冒泡排序与选择排序的对比总结 引言 冒泡排序和选择排序是两种常用的排序算法…

高校大数据教材推荐-《Python中文自然语言处理基础与实战》

《Python中文自然语言处理基础与实战》是“十四五”职业教育国家规划教材&#xff0c;是大数据应用开发&#xff08;Python&#xff09;“1X”职业技能等级证书配套系列教材。本书以项目为载体&#xff0c;突出职业技能。坚持理实一体化的理念。理实一体化&#xff0c;就是理论…

iOS--虚拟内存

参考文章 要想了解什么是VM Regions&#xff0c;就得先了解什么是虚拟内存。当我们向系统申请内存时&#xff0c;系统并不会给你返回物理内存的地址&#xff0c;而是给你一个虚拟内存地址。每个进程都拥有相同大小的虚拟地址空间&#xff0c;对于32位的进程&#xff0c;可以拥有…