基于CNN卷积神经网络的目标识别matlab仿真,数据库采用cifar-10

目录

1.算法运行效果图预览

2.算法运行软件版本

3.部分核心程序

4.算法理论概述

5.算法完整程序工程


1.算法运行效果图预览

2.算法运行软件版本

MATLAB2022a

3.部分核心程序

.......................................................................
%定义网络层
layers = [input_layersCnn_layersouput_layers]layers(2).Weights = 0.0001 * randn([filterSize numChannels numFilters]);% 设置网络训练选项
opts = trainingOptions('sgdm', ...'Momentum', 0.9, ...'InitialLearnRate', 0.001, ...'LearnRateSchedule', 'piecewise', ...'LearnRateDropFactor', 0.1, ...'LearnRateDropPeriod', 8, ...'L2Regularization', 0.004, ...'MaxEpochs', 40, ...'MiniBatchSize', 128, ...'Verbose', true);
% 训练CIFAR-10分类网络
cifar10Net = trainNetwork(P_train, T_train, layers, opts);
% 提取第一个卷积层的权重
w          = cifar10Net.Layers(2).Weights;
% 将权重重新缩放到[0, 1]的范围以便更好地可视化
w          = rescale(w);figure
montage(w)% 在测试集上运行网络
YTest = classify(cifar10Net, P_test);% 计算准确率
accuracy = sum(YTest == T_test)/numel(T_test)figure;
for i = 1:49
subplot(7,7,i)
imshow(P_test(:,:,:,i));
title([YTest(i)]);endfigure;
for i = 1:49
subplot(7,7,i)
imshow(P_test(:,:,:,i+49));
title([YTest(i+49)]);end
52

4.算法理论概述

      CNN是一种专门用于图像处理的神经网络架构,其核心是卷积层、池化层和全连接层。CNN利用卷积操作和池化操作来自动学习图像中的特征,然后通过全连接层将这些特征映射到不同类别的标签上,实现图像分类和目标识别。

     CNN的核心思想是局部感受野的权重共享,即相同卷积核在图像的不同位置进行卷积操作,从而有效地减少了网络参数数量,加速了训练过程。卷积层通过滑动窗口的方式在图像上进行特征提取,然后池化层对提取的特征进行下采样,进一步减少数据维度。

       在CNN中,每个卷积层的过滤器(卷积核)可以捕获不同的特征,例如边缘、纹理等。随着网络的深入,卷积层可以学习到更加抽象的特征,从而实现对图像中不同层次的语义理解。

       卷积层是CNN的核心部分,通过卷积操作从图像中提取特征。卷积操作可以用以下数学公式表示:

        池化层用于减小特征图的尺寸,降低计算复杂度。最大池化是一种常用的池化操作,其数学公式为: 

 

        CIFAR-10数据库: CIFAR-10是一个常用的图像分类数据库,包含10个类别的60000张32x32彩色图像,每个类别有6000张图像。这些类别分别是:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。

在这里插入图片描述

 CIFAR-10数据库的特点:

  • 数据集规模适中,适合用于算法验证和研究。
  • 图像尺寸较小,32x32像素,有助于加快网络训练速度。
  • 包含多个类别,适用于多类别图像分类任务。

       CNN在CIFAR-10数据库上的应用: 在CIFAR-10数据库上,CNN被广泛用于目标识别任务。研究人员使用不同的CNN架构、超参数和训练技巧来实现高性能的图像分类模型。通过对CIFAR-10数据集进行训练,CNN可以自动地学习到各种特征,并实现准确的图像分类。

5.算法完整程序工程

OOOOO

OOO

O

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55187.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

代码随想录算法训练营第四十六天|139.单词拆分、多重背包、背包问题总结

139.单词拆分 ★ 文档讲解 : 代码随想录 - 139.单词拆分 状态:再次回顾。(★:需要多次回顾并重点回顾) 本题其实不套完全背包思路来理解反而更简单易懂一点。 动态规划五部曲: 确定dp数组(dp ta…

相机成像之3A算法的综述

3A算法是摄像机成像控制技术中的三大自动控制算法。随着计算机视觉的迅速发展,该算法在摄像器材领域具有广泛的应用和前景。 那么3A控制算法又是指什么呢? (1)AE (Auto Exposure)自动曝光控制 (2)AF (Auto Focus)自动聚焦控制 (3)AWB (Auto White Balance)自动白平衡控…

RHCE——八、DNS域名解析服务器

RHCE 一、概述1、产生原因2、作用3、连接方式4、因特网的域名结构4.1 拓扑4.2 分类4.3 域名服务器类型划分 二、DNS域名解析过程1、分类2、解析图:2.1 图:2.2 过程分析 三、搭建DNS域名解析服务器1、概述2、安装软件3、/bind服务中三个关键文件4、配置文…

Arduino驱动TEMT6000传感器(光照传感器篇)

目录 1、传感器特性 2、硬件原理图 3、驱动程序 TEMT6000是一个三极管类型的光敏传感器,其光照强度和基极的电流成正比。用起来也相当简单,可以简单的连接该传感器的基极到模拟电压输入,通过简单的检测电压值就可以判断当前的光照强度。 1、

Vue.js知识点学习的一点笔记

一、虚拟DOM 1、原生JS是命令式编程,当渲染在页面的数据发生一点点变化,需要整个重新渲染一编。vue.js渐进式框架有个虚拟DOM的概念,运用diff算法,比较新旧数据,相同的数据不变不重渲染,不同的部分新数据…

若依微服务版部署到IDEA

1.进入若依官网,找到我们要下的微服务版框架 2.点击进入gitee,获取源码,下载到本地 3.下载到本地后,用Idea打开,点击若依官网,找到在线文档,找到微服务版本的,当然你不看文档,直接按…

VR/AR/眼镜投屏充电方案(LDR6020)

VR眼镜即VR头显,也称虚拟现实头戴式显示设备,随着元宇宙概念的传播,VR眼镜的热度一直只增不减,但是头戴设备的续航一直被人诟病,如果增大电池就会让头显变得笨重影响体验,所以目前最佳的解决方案还是使用VR…

使用yapi生成漂亮接口文档

YApi-教程 1. 进入yapi 的菜单 2. 从微服务中导出swagger的json 从浏览器页面访问http://localhost:端口/服务/swagger-ui.html,然后打开浏览器的控制台,查看network,刷新下页面,找到XHR中的api-docs,然后查看res…

Python 阿里云盾滑块验证

&#xfeff;<table><tr><td bgcolororange>本文仅供学习交流使用&#xff0c;如侵立删&#xff01;</td></tr></table> 记一次阿里云盾滑块验证分析并通过 操作环境 win10 、 macPython3.9selenium、pyautogui 分析 最近在做中国庭审…

深度学习算法模型转成算能科技平台xx.bmodel模型的方法步骤

目录 1 docker镜像下载 2 SDK下载 3 下载sophon-demo 4 修改docker镜像的脚本 5 创建个文件夹 6.source 7.转模型 1 docker镜像下载 可以在dockerhub看到镜像的相关信息 https://hub.docker.com/r/sophgo/tpuc_dev/tags 用下面的命令下载 docker pull sophgo/tpuc_d…

若依vue打印的简单方法

像我们后端程序员做前端的话,有时候真不需要知道什么原理,直接塞就好了 我们选用基于hiprint 的vue-plugin-hiprint来打印 目的是为了实现点击某些行的数据,然后点击某个按钮直接弹出下面的打印 此链接 大佬是原创,我拿来总结梳理一下 插件进阶功能请移步: 链接 插件模板制作页…

设计模式--代理模式

笔记来源&#xff1a;尚硅谷Java设计模式&#xff08;图解框架源码剖析&#xff09; 代理模式 1、代理模式的基本介绍 1&#xff09;代理模式&#xff1a;为一个对象提供一个替身&#xff0c;以控制对这个对象的访问。即通过代理对象访问目标对象2&#xff09;这样做的好处是…

mysql 、sql server 游标 cursor

游标 声明的位置 游标必须在声明处理程序之前被声明&#xff0c;并且变量和条件还必须在声明游标或处理程序之前被声明 游标的使用步骤 声明游标打开游标使用游标关闭游标 &#xff08;sql server 关闭游标和释放游标&#xff09; sql server 游标 declare my_cursor curs…

scikit-learn中OneHotEncoder用法

One-Hot编码&#xff0c;又称为一位有效编码&#xff0c;是分类变量作为二进制向量的表示。这首先要求将分类值映射到整数值&#xff0c;然后&#xff0c;每个整数值被表示为二进制向量&#xff0c;将整数索引标记为1&#xff0c;其余都标为0。 OneHotEncoder()常用参数解释 …

SpringBoot的日志级别你了解吗(自定义打印日志)?

1 SpringBoot日志介绍 ⽇志是程序的重要组成部分&#xff0c;想象⼀下&#xff0c;如果程序报错了&#xff0c;不让你打开控制台看⽇志&#xff0c;那么你能找到报错的原因吗&#xff1f; 如果是简单的错误有可能找出来&#xff0c;但是对于开发中的大多数错误还是需要我们打开…

在 Redis 中处理键值 | Navicat

Redis 是一个键值存储系统&#xff0c;允许我们将值与键相关联起来。与关系型数据库不同的是&#xff0c; 在Redis 中&#xff0c;不需要使用数据操作语言 &#xff08;DML&#xff09; 和查询语法&#xff0c;那么我们如何进行数据的写入、读取、更新和删除操作呢&#xff1f;…

数据库——Redis 常见数据结构以及使用场景分析

文章目录 1. string2. list3. hash4. set5. sorted set 你可以自己本机安装 redis 或者通过 redis 官网提供的在线 redis 环境。 1. string 介绍 &#xff1a;string 数据结构是简单的 key-value 类型。虽然 Redis 是用 C 语言写的&#xff0c;但是 Redis 并没有使用 C 的字符串…

Docker构建镜像

Docker根据Dockerfile文件构建镜像 在实际生产中&#xff0c;常常使用Dockerfile构建企业级生产环境镜像,然后再部署在我们的生产环境中&#xff0c;本文将从从零开始介绍Dockerfile如何使用&#xff0c;构建镜像。 Dockerhub官网地址&#xff1a;https://registry.hub.docke…

Vue Element upload组件和Iview upload 组件上传文件

今天要分享的是使用这俩个UI组件库的upload组件分别实现调用组件本身的上传方法实现和后台交互。接下来就是开车的时间&#xff0c;请坐稳扶好~ 一、element upload组件传送门 1、html文件 <el-upload ref"uploadRef" :action"uploadUrl" :data"…

深入探讨C存储类和存储期——Storage Duration

&#x1f517; 《C语言趣味教程》&#x1f448; 猛戳订阅&#xff01;&#xff01;&#xff01; ​—— 热门专栏《维生素C语言》的重制版 —— &#x1f4ad; 写在前面&#xff1a;这是一套 C 语言趣味教学专栏&#xff0c;目前正在火热连载中&#xff0c;欢迎猛戳订阅&#…