jdk 03.stream

01.集合处理数据的弊端
当我们在需要对集合中的元素进行操作的时候,除了必需的添加,删除,获取外,最典型的操作就是集合遍历

package com.bobo.jdk.stream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class StreamTest01 {public static void main(String[] args) {// 定义一个List集合List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");// 1.获取所有 姓张的信息List<String> list1 = new ArrayList<>();for (String s : list) {if(s.startsWith("张")){list1.add(s);}}// 2.获取名称长度为3的用户List<String> list2 = new ArrayList<>();for (String s : list1) {if(s.length() == 3){list2.add(s);}}for (String s : list2) {System.out.println(s);}}
}

上面的代码针对与我们不同的需求总是一次次的循环循环循环.这时我们希望有更加高效的处理方式,这时我们就可以通过JDK8中提供的Stream API来解决这个问题了。
Stream更加优雅的解决方案:

package com.bobo.jdk.stream;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
public class StreamTest02 {public static void main(String[] args) {// 定义一个List集合List<String> list = Arrays.asList("张三","张三丰","成龙","周星驰");// 1.获取所有 姓张的信息// 2.获取名称长度为3的用户// 3. 输出所有的用户信息list.stream().filter(s->s.startsWith("张")).filter(s->s.length() == 3).forEach(s->{System.out.println(s);});System.out.println("----------");list.stream().filter(s->s.startsWith("张")).filter(s->s.length() == 3).forEach(System.out::println);}
}

上面的SteamAPI代码的含义:获取流,过滤张,过滤长度,逐一打印。代码相比于上面的案例更加的简洁直观

0 2. Steam流式思想概述
注意:

Stream和IO流(InputStream/OutputStream)没有任何关系,请暂时忘记对传统IO流的固有印象!

Stream流式思想类似于工厂车间的“生产流水线”,Stream流不是一种数据结构,不保存数据,而是对数据进行加工处理。
Stream可以看作是流水线上的一个工序。在流水线上,通过多个工序让一个原材料加工成一个商品。

在这里插入图片描述
Stream API能让我们快速完成许多复杂的操作,如筛选、切片、映射、查找、去除重复,统计,匹配和归约。

0 3. Stream流的获取方式
1 根据Collection获取

 首先,java.util.Collection 接口中加入了default方法stream,也就是说Collection接口下的所有的实现都可以通过steam方法来获取Stream流。
public static void main(String[] args) {List<String> list = new ArrayList<>();list.stream();Set<String> set = new HashSet<>();set.stream();Vector vector = new Vector();vector.stream();
}

但是Map接口别没有实现Collection接口,那这时怎么办呢?这时我们可以根据Map获取对应的key-value的集合。

public static void main(String[] args) {Map<String,Object> map = new HashMap<>();Stream<String> stream = map.keySet().stream(); // keyStream<Object> stream1 = map.values().stream(); // valueStream<Map.Entry<String, Object>> stream2 = map.entrySet().stream(); //entry
}

3.1 通过Stream的of方法
在实际开发中我们不可避免的还是会操作到数组中的数据,由于数组对象不可能添加默认方法,

所有Stream接口中提供了静态方法of

public class StreamTest05 {public static void main(String[] args) {Stream<String> a1 = Stream.of("a1", "a2", "a3");String[] arr1 = {"aa","bb","cc"};Stream<String> arr11 = Stream.of(arr1);Integer[] arr2 = {1,2,3,4};Stream<Integer> arr21 = Stream.of(arr2);arr21.forEach(System.out::println);// 注意:基本数据类型的数组是不行的int[] arr3 = {1,2,3,4};Stream.of(arr3).forEach(System.out::println);}
}

4.Stream常用方法介绍

Stream常用方法:

在这里插入图片描述

Stream流模型的操作很丰富,这里介绍一些常用的API。这些方法可以被分成两种:

终结方法:返回值类型不再是 Stream 类型的方法,不再支持链式调用。

本小节中,

终结方法包括count 和forEach 方法。 非终结方法:返回值类型仍然是 Stream 类型的方法,支持链式调用。

(除了终结方法外,其余方法均为非终结方法。)

Stream注意事项(重要)

  1. Stream只能操作一次
  2. Stream方法返回的是新的流
  3. Stream不调用终结方法,中间的操作不会执行

4.1 forEach
forEach用来遍历流中的数据的

void forEach(Consumer<? super T> action);

该方法接受一个Consumer接口,会将每一个流元素交给函数处理

void forEach(Consumer<? super T> action);public static void main(String[] args) {Stream.of("a1", "a2", "a3").forEach(System.out::println);;
}

4.2 count
Stream流中的count方法用来统计其中的元素个数的

long count();

该方法返回一个long值,代表元素的个数。

public static void main(String[] args) {long count = Stream.of("a1", "a2", "a3").count();System.out.println(count);
}

4.3 filter
filter方法的作用是用来过滤数据的。返回符合条件的数据
在这里插入图片描述
可以通过filter方法将一个流转换成另一个子集流

Stream<T> filter(Predicate<? super T> predicate);

该接口接收一个Predicate函数式接口参数作为筛选条件

public static void main(String[] args) {Stream.of("a1", "a2", "a3","bb","cc","aa","dd").filter((s)->s.contains("a")).forEach(System.out::println);
}

在这里插入图片描述
limit方法可以对流进行截取处理,支取前n个数据,

Stream<T> limit(long maxSize);

参数是一个long类型的数值,如果集合当前长度大于参数就进行截取,否则不操作:

public static void main(String[] args) {Stream.of("a1", "a2", "a3","bb","cc","aa","dd").limit(3).forEach(System.out::println);
}

4.5 skip
在这里插入图片描述
如果希望跳过前面几个元素,可以使用skip方法获取一个截取之后的新流:

Stream<T> skip(long n);

操作:

public static void main(String[] args) {Stream.of("a1", "a2", "a3","bb","cc","aa","dd").skip(3).forEach(System.out::println);
}

4.6 map
如果我们需要将流中的元素映射到另一个流中(或者说把集合中的元素都改变数据类型),可以使用map方法:

<R> Stream<R> map(Function<? super T, ? extends R> mapper);

在这里插入图片描述

该接口需要一个Function函数式接口参数,可以将当前流中的T类型数据转换为另一种R类型的数据

public static void main(String[] args) {Stream.of("1", "2", "3","4","5","6","7")//.map(msg->Integer.parseInt(msg)).map(Integer::parseInt).forEach(System.out::println);
}

4.7 sorted
如果需要将数据排序,可以使用sorted方法:

Stream<T> sorted();

在使用的时候可以根据自然规则排序,也可以通过比较强来指定对应的排序规则

public static void main(String[] args) {Stream.of("1", "3", "2","4","0","9","7")//.map(msg->Integer.parseInt(msg)).map(Integer::parseInt)//.sorted() // 根据数据的自然顺序排序.sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则.forEach(System.out::println);
}

4.8 distinct
如果要去掉重复数据,可以使用distinct方法:

Stream<T> distinct();

在这里插入图片描述
运行:

public static void main(String[] args) {Stream.of("1", "3", "3","4","0","1","7")//.map(msg->Integer.parseInt(msg)).map(Integer::parseInt)//.sorted() // 根据数据的自然顺序排序.sorted((o1,o2)->o2-o1) // 根据比较强指定排序规则.distinct() // 去掉重复的记录.forEach(System.out::println);System.out.println("--------");Stream.of(new Person("张三",18),new Person("李四",22),new Person("张三",18)).distinct().forEach(System.out::println);
}

Stream流中的distinct方法对于基本数据类型是可以直接出重的,但是对于自定义类型,我们是需要重写hashCode和equals方法来移除重复元素。

4.9 match
如果需要判断数据是否匹配指定的条件,可以使用match相关的方法

boolean anyMatch(Predicate<? super T> predicate); // 元素是否有任意一个满足条件
boolean allMatch(Predicate<? super T> predicate); // 元素是否都满足条件
boolean noneMatch(Predicate<? super T> predicate); // 元素是否都不满足条件

使用

public static void main(String[] args) {boolean b = Stream.of("1", "3", "3", "4", "5", "1", "7").map(Integer::parseInt)//.allMatch(s -> s > 0)//.anyMatch(s -> s >4).noneMatch(s -> s > 4);System.out.println(b);
}

4.10 find
如果我们需要找到某些数据,可以使用find方法来实现

Optional<T> findFirst();
Optional<T> findAny();

在这里插入图片描述
运行:

public static void main(String[] args) {Optional<String> first = Stream.of("1", "3", "3", "4", "5", "1","7").findFirst();System.out.println(first.get());Optional<String> any = Stream.of("1", "3", "3", "4", "5", "1","7").findAny();System.out.println(any.get());
}

4.11 max和min
在这里插入图片描述
如果我们想要获取最大值和最小值,那么可以使用max和min方法

Optional<T> min(Comparator<? super T> comparator);
Optional<T> max(Comparator<? super T> comparator);

运行:

public static void main(String[] args) {Optional<Integer> max = Stream.of("1", "3", "3", "4", "5", "1", "7").map(Integer::parseInt).max((o1,o2)->o1-o2);System.out.println(max.get());Optional<Integer> min = Stream.of("1", "3", "3", "4", "5", "1", "7").map(Integer::parseInt).min((o1,o2)->o1-o2);System.out.println(min.get());
}

4.12 reduce方法
在这里插入图片描述
如果需要将所有数据归纳得到一个数据,可以使用reduce方法

T reduce(T identity, BinaryOperator<T> accumulator);
public static void main(String[] args) {Integer sum = Stream.of(4, 5, 3, 9)// identity默认值// 第一次的时候会将默认值赋值给x// 之后每次会将 上一次的操作结果赋值给x, y就是每次从数据中获取的元素.reduce(0, (x, y) -> {System.out.println("x="+x+",y="+y);return x + y;});System.out.println(sum);// 获取 最大值Integer max = Stream.of(4, 5, 3, 9).reduce(0, (x, y) -> {return x > y ? x : y;});System.out.println(max);
}

4.13 map和reduce的组合
在实际开发中我们经常会将map和reduce一块来使用

public static void main(String[] args) {// 1.求出所有年龄的总和Integer sumAge = Stream.of(new Person("张三", 18), new Person("李四", 22), new Person("张三", 13), new Person("王五", 15), new Person("张三", 19)).map(Person::getAge) // 实现数据类型的转换.reduce(0, Integer::sum);System.out.println(sumAge);// 2.求出所有年龄中的最大值Integer maxAge = Stream.of(new Person("张三", 18), new Person("李四", 22), new Person("张三", 13), new Person("王五", 15), new Person("张三", 19)).map(Person::getAge) // 实现数据类型的转换,符合reduce对数据的要求.reduce(0, Math::max); // reduce实现数据的处理System.out.println(maxAge);
// 3.统计 字符 a 出现的次数Integer count = Stream.of("a", "b", "c", "d", "a", "c", "a").map(ch -> "a".equals(ch) ? 1 : 0).reduce(0, Integer::sum);System.out.println(count);
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/55030.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

测试框架pytest教程(10)自定义命令行-pytest_addoption

pytest_addoption pytest_addoption是pytest插件系统中的一个钩子函数&#xff0c;用于向pytest添加自定义命令行选项。 在pytest中&#xff0c;可以使用命令行选项来控制测试的行为和配置。pytest_addoption钩子函数允许您在运行pytest时添加自定义的命令行选项&#xff0c;…

中国芯,寻找新赛道迫在眉睫

北京华兴万邦管理咨询有限公司 商瑞 陈皓 近期国内半导体行业的热点可以用两个“有点多”来描述&#xff0c;一个是中国芯群体中上市公司股价闪崩的有点多&#xff0c;另一个是行业和企业的活动有点多。前者说明了许多国内芯片设计企业&#xff08;fabless商业模式&#xff09;…

Ubuntu20 安装 libreoffice

1 更新apt-get sudo apt-get update2 安装jdk 查看jdk安装情况 Command java not found, but can be installed with:sudo apt install default-jre # version 2:1.11-72, or sudo apt install openjdk-11-jre-headless # version 11.0.138-0ubuntu1~20.04 sud…

在Jupyter Notebook中添加Anaconda环境(内核)

在使用前我们先要搞清楚一些事&#xff1a; 我们在安装anaconda的时候它就内置了Jupyter Notebook&#xff0c;这个jupyter初始只有base一个内核&#xff08;显示为Python3&#xff09; 此后其实我们就不需要重复安装完整的jupyter notebook了&#xff0c;只要按需为其添加新的…

基于寄生捕食算法优化的BP神经网络(预测应用) - 附代码

基于寄生捕食算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于寄生捕食算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.寄生捕食优化BP神经网络2.1 BP神经网络参数设置2.2 寄生捕食算法应用 4.测试结果&#xff1a;5…

【ASP.NET】LIS实验室信息管理系统源码

LIS系统&#xff0c;即实验室信息管理系统&#xff0c;是一种基于互联网技术的医疗行业管理软件&#xff0c;它可以帮助实验室进行样本管理、检测流程管理、结果报告等一系列工作&#xff0c; 提高实验室工作效率和质量。 一、LIS系统的功能 1. 样本管理 LIS系统可以帮助实验…

【局部活动轮廓】使用水平集方法实现局部活动轮廓方法研究(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

SpringBoot项目(支付宝整合)——springboot整合支付宝沙箱支付 从极简实现到IOC改进

目录 引出git代码仓库准备工作支付宝沙箱api内网穿透 [natapp.cn](https://natapp.cn/#download) springboot整合—极简实现版1.导包配置文件2.controller层代码3.进行支付流程4.支付成功回调 依赖注入的改进1.整体结构2.pom.xml文件依赖3.配置文件4.配置类&#xff0c;依赖注入…

下载的文件被Windows 11 安全中心自动删除

今天从CSDN上下载了自己曾经上传的文件&#xff0c;但是浏览器下载完之后文件被Windows安全中心自动删除&#xff0c;说是带病毒。实际是没有病毒的&#xff0c;再说了即便有病毒也不应该直接删除啊&#xff0c;至少给用户一个保留或删除的选项。 研究了一番&#xff0c;可以暂…

设计模式之八:迭代器与组合模式

有许多方法可以把对象堆起来成为一个集合&#xff08;Collection&#xff09;&#xff0c;比如放入数组、堆栈或散列表中。若用户直接从这些数据结构中取出对象&#xff0c;则需要知道具体是存在什么数据结构中&#xff08;如栈就用peek&#xff0c;数组[]&#xff09;。迭代器…

推荐前 6 名 JavaScript 和 HTML5 游戏引擎

推荐&#xff1a;使用 NSDT场景编辑器 助你快速搭建3D应用场景 事实是&#xff0c;自从引入JavaScript WebGL API以来&#xff0c;现代浏览器具有直观的功能&#xff0c;使它们能够渲染更复杂和复杂的2D和3D图形&#xff0c;而无需依赖第三方插件。 你可以用纯粹的JavaScript开…

tensordataset 和dataloader取值

测试1 from torch.utils.data import TensorDataset,DataLoader import numpy as np import torch a np.array([[1,2,3],[2,3,3],[1,1,2],[10,10,10],[100,200,200],[-1,-2,-3]]) print(a)X torch.FloatTensor(a) print(X)dataset TensorDataset(X,X)测试2 from torch.uti…

字节一面:闭包是什么?闭包的用途是什么?

前言 最近博主在字节面试中遇到这样一个面试题&#xff0c;这个问题也是前端面试的高频问题&#xff0c;因为在前端开发的日常开发中我们经常会用到闭包&#xff0c;我们会借助闭包来封装一些工具函数&#xff0c;所以更深的了解闭包是很有必要的&#xff0c;博主在这给大家细细…

自动驾驶感知传感器标定安装说明

1. 概述 本标定程序为整合现开发的高速车所有标定模块,可实现相机内参标定和激光、相机、前向毫米波 至车辆后轴中心标定,标定参数串联传递并提供可视化工具验证各个模块标定精度。整体标定流程如下,标定顺序为下图前标0-->1-->2-->3,相同编号标定顺序没有强制要求…

Python学习笔记:正则表达式、逻辑运算符、lamda、二叉树遍历规则、类的判断

1.正则表达式如何写&#xff1f; 序号实例说明1.匹配任何字符(除换行符以外)2\d等效于[0-9]&#xff0c;匹配数字3\D等效于[^0-9]&#xff0c;匹配非数字4\s等效于[\t\r\n\f]&#xff0c;匹配空格字符5\S等效于[^\t\r\n\f]&#xff0c;匹配非空格字符6\w等效于[A-Za-z0-9]&…

<JDBC>

文章目录 1.JDBC核心技术1.数据的持久化2.JAVA中的数据存储技术3.JDBC介绍4.JDBC体系结构5.JDBC程序编写步骤 2.获取数据库连接1.Driver接口实现类2.注册与加载JDBC驱动3.URL4.用户和密码 3. PreparedStatement 和 Statement1.PreparedStatement介绍2. PreparedStatement vs St…

CMake3.27+OpenCV4.8+VS2019+CUDA配置

1、准备工作 CMake3.27OpenCV4.8opencv_contrib-4.8.0CUDACUDNNTensorRT下载好并安装cuda 2、正式开始安装 启动CMake开始配置 打开刚解压的cmake文件夹中找到bin目录下的cmake-gui.exe 点击cmake中左下角的 Configure进行第一次配置&#xff0c;会弹出选择环境对话框 再点击Fi…

HodlSoftware-免费在线PDF工具箱 加解密PDF 集成隐私保护功能

HodlSoftware是什么 HodlSoftware是一款免费在线PDF工具箱&#xff0c;集合编辑 PDF 的简单功能&#xff0c;可以对PDF进行加解密、优化压缩PDF、PDF 合并、PDF旋转、PDF页面移除和分割PDF等操作&#xff0c;而且工具集成隐私保护功能&#xff0c;文件只在浏览器本地完成&…

windows系统依赖环境一键安装

window系统程序依赖库&#xff0c;可以联系我获取15958139685 脚本代码如下&#xff0c;写到1. bat文件中&#xff0c;双击直接运行&#xff0c;等待安装完成即可 Scku.exe -AVC.exe /SILENT /COMPONENTS"icons,ext\reg\shellhere,assoc,assoc_sh" /dir%1\VC

Wireshark流量分析

目录 1.基本介绍 2.基本使用 1&#xff09;数据包筛选: 2&#xff09;筛选ip&#xff1a; 3&#xff09;数据包还原 4&#xff09;数据提取 3.wireshark实例 1.基本介绍 在CTF比赛中&#xff0c;对于流量包的分析取证是一种十分重要的题型。通常这类题目都是会提供一个包含…