默认内网访问,要在外网访问的话,需要在修改config/server.properties中的配置
将listeners和advertised.listeners的值用主机名进行替换,在外用使用java进行生产者或消费者连接的时候,不填写具体的IP,填写安装kafka的主机名,然后,在hosts目录中,配置该主机名对应的真是IP地址即可;
以下命令都是摘抄与官网http://kafka.apache.org/quickstart
先启动zookeeper,默认自带的
bin/zookeeper-server-start.sh config/zookeeper.properties
然后启动kafka服务
bin/kafka-server-start.sh config/server.properties
列举拥有哪些topics
bin/kafka-topics.sh --list --bootstrap-server localhost:9092
在服务器上打开一个生产者,然后把输入的每行数据发送到kafka中的命令
bin/kafka-console-producer.sh --broker-list localhost:9092 --topic test
#后面光标提示数据数据,然后回车就会发送到kafka中了
打开一个消费者
bin/kafka-console-consumer.sh --bootstrap-server localhost:9092 --topic test --from-beginning
当有数据往kafka的test主题发送消息,这边就会进行消费。
java调用作为生产者和消费者代码:
项目需要引入的依赖pom.xml
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"><modelVersion>4.0.0</modelVersion><groupId>com.theorydance</groupId><artifactId>kafkademo</artifactId><version>0.0.1-SNAPSHOT</version><packaging>jar</packaging><name>kafkademo</name><url>http://maven.apache.org</url><properties><project.build.sourceEncoding>UTF-8</project.build.sourceEncoding></properties><dependencies><dependency><groupId>org.apache.kafka</groupId><artifactId>kafka-clients</artifactId><version>2.1.1</version></dependency></dependencies> </project>
生产者代码ProducerDemo.java
package com.theorydance.kafkademo;import java.util.Properties;import org.apache.kafka.clients.producer.KafkaProducer; import org.apache.kafka.clients.producer.Producer; import org.apache.kafka.clients.producer.ProducerRecord;public class ProducerDemo {public static void main(String[] args){Properties properties = new Properties();properties.put("bootstrap.servers", "node125:9092");properties.put("acks", "all");properties.put("retries", 0);properties.put("batch.size", 16384);properties.put("linger.ms", 1);properties.put("buffer.memory", 33554432);properties.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");properties.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");Producer<String, String> producer = null;try {producer = new KafkaProducer<String, String>(properties);for (int i = 0; i < 100; i++) {String msg = "This is Message " + i;producer.send(new ProducerRecord<String, String>("HelloWorld", msg));System.out.println("Sent:" + msg);}} catch (Exception e) {e.printStackTrace();} finally {producer.close();}} }
消费者代码ConsumerDemo.java
package com.theorydance.kafkademo;import java.util.HashSet; import java.util.List; import java.util.Map; import java.util.Properties; import java.util.Set;import org.apache.kafka.clients.consumer.ConsumerRecord; import org.apache.kafka.clients.consumer.ConsumerRecords; import org.apache.kafka.clients.consumer.KafkaConsumer; import org.apache.kafka.common.PartitionInfo;public class ConsumerDemo {public static void main(String[] args) throws InterruptedException {Properties properties = new Properties();properties.put("bootstrap.servers", "node125:9092");properties.put("group.id", "group-1");properties.put("enable.auto.commit", "true");properties.put("auto.commit.interval.ms", "1000");properties .put("auto.offset.reset", "earliest");properties.put("session.timeout.ms", "30000");properties.put("key.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");properties.put("value.deserializer", "org.apache.kafka.common.serialization.StringDeserializer");KafkaConsumer<String, String> kafkaConsumer = new KafkaConsumer<>(properties);while(true){Map<String, List<PartitionInfo>> maps = kafkaConsumer.listTopics();System.out.println("监听topics="+maps.keySet());Set<String> sets = new HashSet<>();for (String topic : maps.keySet()) {if(topic.startsWith("Hello")){ // 制定规则,监听哪一些的topicsets.add(topic);}}kafkaConsumer.subscribe(sets);long startTime = System.currentTimeMillis();while (true) {ConsumerRecords<String, String> records = kafkaConsumer.poll(100);for (ConsumerRecord<String, String> record : records) {System.out.printf("offset = %d, value = %s, topic = %s", record.offset(), record.value(), record.topic());System.out.println("=====================>");}long endTime = System.currentTimeMillis();if(endTime - startTime > 30000){System.out.println("------------------------------------------------------------------");break;}}}} }
说明:在实际需求中,我需要收集在不同服务器上的日志(微服务相同模块和不同模块,或其他程序的日志),采用的是flume进行收集,希望能够对收集的日志进行分类(区别是哪个程序产生的),去网上找了一下,在flume进行收集的时候,能不能在日志前面加上应用的标识进行区别,我没有找到,如果有,看到该博客的同行,请不吝赐教。我这边就换了种思路,就像前面我写的消费者示例一样,不同的程序日志,我往不同的topic中进行发送消息,在消费者监听一定规则的topic,然后进行消费,这样就可以区分不同的应用程序的日志了。