为什么要使用 HyperLogLog?
在我们实际开发的过程中,可能会遇到这样一个问题,当我们需要统计一个大型网站的独立访问次数时,该用什么的类型来统计?
如果我们使用 Redis 中的集合来统计,当它每天有数千万级别的访问时,将会是一个巨大的问题。因为这些访问量不能被清空,我们运营人员可能会随时查看这些信息,那么随着时间的推移,这些统计数据所占用的空间会越来越大,逐渐超出我们能承载最大空间。
例如,我们用 IP 来作为独立访问的判断依据,那么我们就要把每个独立 IP 进行存储,以 IP4 来计算,IP4 最多需要 15 个字节来存储信息,例如:110.110.110.110。当有一千万个独立 IP 时,所占用的空间就是 15 bit*10000000 约定于 143MB,但这只是一个页面的统计信息,假如我们有 1 万个这样的页面,那我们就需要 1T 以上的空间来存储这些数据,而且随着 IP6 的普及,这个存储数字会越来越大,那我们就不能用集合的方式来存储了,这个时候我们需要开发新的数据类型 HyperLogLog 来做这件事了。
HyperLogLog 介绍
HyperLogLog(下文简称为 HLL)是 Redis 2.8.9 版本添加的数据结构,它用于高性能的基数(去重)统计功能,它的缺点就是存在极低的误差率。
HLL 具有以下几个特点:
- 能够使用极少的内存来统计巨量的数据,它只需要 12K 空间就能统计 2^64 的数据;
- 统计存在一定的误差,误差率整体较低,标准误差为 0.81%;