》》欢迎 点赞,留言,收藏加关注《《
1. 模型构建的步骤:
在构建AI模型时,一般有以下主要步骤:准备数据、数据预处理、划分数据集、配置模型、训练模型、评估优化、模型应用,如下图所示:
【注意】由于MNIST数据集太经典了,很多深度学习书籍在介绍该入门模型案例时,基本上就是直接下载获取数据,然后就进行模型训练,最后得出一个准确率出来。但这样的入门案例学习后,当要拿自己的数据来训练模型,却往往不知该如何处理数据、如何训练、如何应用。在本文,将分两种情况进行介绍:(1)使用MNIST数据(本案例),(2)使用自己的数据。
2. 库文件的导入
2.1 使用现成的mnist数据
import tensorflow as tf
# 从tensorflow.examples.tutorials.mnist 导入模块
# 这是TensorFlow 为了教学MNIST而提前编制的程序
from tensorflow.examples.tutorials.mnist import input_data
import matplotlib.pyplot as plt
mnist = input_data.read_data_sets('/home/anaconda2/桌面/mnist_practice/MNIST_data',one_hot=True)
# MNIST_data指的是存放数据的文件夹路径,one_hot=True 为采用one_hot的编码方式编码标签
# 从MNIST_data/中读取MNIST数据,这条语句在数据不存在时,会自动执行下载
2.2 使用自己做的数据
如果是使用自己的数据集,在准备数据时的重要工作是“标注数据”,也就是对数据进行打标签,主要的标注方式有:
① 整个文件打标签。例如MNIST数据集,每个图像只有1个数字,可以从0至9建10个文件夹,里面放相应数字的图像;也可以定义一个规则对图像进行命名,如按标签+序号命名;还可以在数据库里面创建一张对应表,存储文件名与标签之间的关联关系。如下图:
② 圈定区域打标签。例如ImageNet的物体识别数据集,由于每张图片上有各种物体,这些物体位于不同位置,因此需要圈定某个区域进行标注,目前比较流行的是VOC2007、VOC2012数据格式,这是使用xml文件保存图片中某个物体的名称(name)和位置信息(xmin,ymin,xmax,ymax)。
如果图片很多,一张一张去计算位置信息,然后编写xml文件,实在是太耗时耗力了。所幸,有一位大神开源了一个数据标注工具labelImg(https://github.com/tzutalin/labelImg),只要在界面上画框标注,就能自动生成VOC格式的xml文件了,非常方便,如下图所示:
③ 数据截段打标签。针对语音识别、文字识别等,有些是将数据截成一段一段的语音或句子,然后在另外的文件中记录对应的标签信息。
3. 数据预处理
在准备好基础数据之后,需要根据模型需要对基础数据进行相应的预处理。
(1)使用MNIST数据(本案例)
由于MNIST数据集的尺寸统一,只有黑白两种像素,无须再进行额外的预处理,直接拿来建模型就行。
(2)使用自己的数据
而如果是要训练自己的数据,根据模型需要一般要进行以下预处理:
a. 统一格式:即统一基础数据的格式,例如图像数据集,则全部统一为jpg格式;语音数据集,则全部统一为wav格式;文字数据集,则全部统一为UTF-8的纯文本格式等,方便模型的处理;
b. 调整尺寸:根据模型的输入要求,将样本数据全部调整为统一尺寸。例如LeNet模型是32x32,AlexNet是224x224,VGG是224x224等;
c. 灰度化:根据模型需要,有些要求输入灰度图像,有些要求输入RGB彩色图像;
d. 去噪平滑:为提升输入图像的质量,对图像进行去噪平滑处理,可使用中值滤波器、高斯滤波器等进行图像的去噪处理。如果训练数据集的图像质量很好了,则无须作去噪处理;
e. 其它处理:根据模型需要进行直方图均衡化、二值化、腐蚀、膨胀等相关的处理;
f. 样本增强:有一种观点认为神经网络是靠数据喂出来的,如果能够增加训练数据的样本量,提供海量数据进行训练,则能够有效提升算法的质量。常见的样本增强方式有:水平翻转图像、随机裁剪、平移变换,颜色、光照变换等。
4. 划分数据集
在训练模型之前,需要将样本数据划分为训练集、测试集,有些情况下还会划分为训练集、测试集、验证集。
(1)使用MNIST数据
本案例要训练模型的MNIST数据集,已经提供了训练集、测试集,代码如下:
#load data(提取训练集、测试集)
train_xdata = mnist.train.images #训练集样本
validation_xdata = mnist.validation.images #验证集样本
test_xdata = mnist.test.images #测试集样本
#labels(提取标签数据)
train_labels = mnist.train.labels #训练集标签
validation_labels = mnist.validation.labels #验证集标签
test_labels = mnist.test.labels #测试集标签
print(train_xdata.shape,train_labels.shape) #输出训练集样本和标签的大小
(2)使用自己的数据
如果是要划分自己的数据集,可使用scikit-learn工具进行划分,代码如下:
fromsklearn.cross_validationimporttrain_test_split
# 随机选取75%的数据作为训练样本,其余25%的数据作为测试样本
# X_data:数据集
# y_labels:数据集对应的标签X_train,X_test,y_train,y_test=train_test_split(X_data,y_labels,test_size=0.25,random_state=33)
5. 查看数据与可视化样本
#查看数据,例如训练集中第一个样本的内容和标签
print(train_xdata[0]) #是一个包含784个元素且值在[0,1]之间的向量
print(train_labrels[0])
#可视化样本,下面是输出了训练集中前20个样本
fig, ax = plt.subplots(nrows=4,ncols=5,sharex='all',sharey='all')
ax = ax.flatten()
for i in range(20):
。。img = train_xdata[i].reshape(28, 28)
。。ax[i].imshow(img,cmap='Greys')
ax[0].set_xticks([])
ax[0].set_yticks([])
plt.tight_layout()
plt.show()
6. 输出效果
......................省略省略