2019独角兽企业重金招聘Python工程师标准>>>
默认情况下,Map输出的结果会对Key进行默认的排序,但是有时候需要对Key排序的同时还需要对Value进行排序,这时候就要用到二次排序了。下面我们来说说二次排序
1、二次排序原理
我们把二次排序分为以下几个阶段
Map起始阶段
在Map阶段,使用job.setInputFormatClass()定义的InputFormat,将输入的数据集分割成小数据块split,同时InputFormat提供一个RecordReader的实现。在这里我们使用的是TextInputFormat,它提供的RecordReader会将文本的行号作为Key,这一行的文本作为Value。这就是自定 Mapper的输入是<LongWritable,Text> 的原因。然后调用自定义Mapper的map方法,将一个个<LongWritable,Text>键值对输入给Mapper的map方法
Map最后阶段
在Map阶段的最后,会先调用job.setPartitionerClass()对这个Mapper的输出结果进行分区,每个分区映射到一个Reducer。每个分区内又调用job.setSortComparatorClass()设置的Key比较函数类排序。可以看到,这本身就是一个二次排序。如果没有通过job.setSortComparatorClass()设置 Key比较函数类,则使用Key实现的compareTo()方法
Reduce阶段
在Reduce阶段,reduce()方法接受所有映射到这个Reduce的map输出后,也会调用job.setSortComparatorClass()方法设置的Key比较函数类,对所有数据进行排序。然后开始构造一个Key对应的Value迭代器。这时就要用到分组,使用 job.setGroupingComparatorClass()方法设置分组函数类。只要这个比较器比较的两个Key相同,它们就属于同一组,它们的 Value放在一个Value迭代器,而这个迭代器的Key使用属于同一个组的所有Key的第一个Key。最后就是进入Reducer的 reduce()方法,reduce()方法的输入是所有的Key和它的Value迭代器,同样注意输入与输出的类型必须与自定义的Reducer中声明的一致
接下来我们通过示例,可以很直观的了解二次排序的原理
输入文件 sort.txt 内容为
40 20
40 10
40 30
40 5
30 30
30 20
30 10
30 40
50 20
50 50
50 10
50 60
输出文件的内容(从小到大排序)如下
30 10
30 20
30 30
30 40
--------
40 5
40 10
40 20
40 30
--------
50 10
50 20
50 50
50 60
从输出的结果可以看出Key实现了从小到大的排序,同时相同Key的Value也实现了从小到大的排序,这就是二次排序的结果
2、二次排序的具体流程
在本例中要比较两次。先按照第一字段排序,然后再对第一字段相同的按照第二字段排序。根据这一点,我们可以构造一个复合类IntPair ,它有两个字段,先利用分区对第一字段排序,再利用分区内的比较对第二字段排序。二次排序的流程分为以下几步。
1、自定义 key
所有自定义的key应该实现接口WritableComparable,因为它是可序列化的并且可比较的。WritableComparable 的内部方法如下所示
// 反序列化,从流中的二进制转换成IntPair public void readFields(DataInput in) throws IOException// 序列化,将IntPair转化成使用流传送的二进制 public void write(DataOutput out)// key的比较 public int compareTo(IntPair o)// 默认的分区类 HashPartitioner,使用此方法 public int hashCode()// 默认实现 public boolean equals(Object right)
2、自定义分区
自定义分区函数类FirstPartitioner,是key的第一次比较,完成对所有key的排序。
public static class FirstPartitioner extends Partitioner< IntPair,IntWritable>
在job中使用setPartitionerClasss()方法设置Partitioner
job.setPartitionerClasss(FirstPartitioner.Class);
3、Key的比较类
这是Key的第二次比较,对所有的Key进行排序,即同时完成IntPair中的first和second排序。该类是一个比较器,可以通过两种方式实现。
1) 继承WritableComparator。
public static class KeyComparator extends WritableComparator
必须有一个构造函数,并且重载以下方法。
public int compare(WritableComparable w1, WritableComparable w2)
2) 实现接口 RawComparator。
上面两种实现方式,在Job中,可以通过setSortComparatorClass()方法来设置Key的比较类。
job.setSortComparatorClass(KeyComparator.Class);
注意:如果没有使用自定义的SortComparator类,则默认使用Key中compareTo()方法对Key排序。
4、定义分组类函数
在Reduce阶段,构造一个与 Key 相对应的 Value 迭代器的时候,只要first相同就属于同一个组,放在一个Value迭代器。定义这个比较器,可以有两种方式。
1) 继承 WritableComparator。
public static class GroupingComparator extends WritableComparator
必须有一个构造函数,并且重载以下方法。
public int compare(WritableComparable w1, WritableComparable w2)
2) 实现接口 RawComparator。
上面两种实现方式,在 Job 中,可以通过 setGroupingComparatorClass()方法来设置分组类。
job.setGroupingComparatorClass(GroupingComparator.Class);
另外注意的是,如果reduce的输入与输出不是同一种类型,则 Combiner和Reducer 不能共用 Reducer 类,因为 Combiner 的输出是 reduce 的输入。除非重新定义一个Combiner。
3、代码实现
Hadoop的example包中自带了一个MapReduce的二次排序算法,下面对 example包中的二次排序进行改进
package com.buaa;import java.io.DataInput; import java.io.DataOutput; import java.io.IOException;import org.apache.hadoop.io.WritableComparable;/** * @ProjectName SecondarySort * @PackageName com.buaa * @ClassName IntPair * @Description 将示例数据中的key/value封装成一个整体作为Key,同时实现 WritableComparable接口并重写其方法 * @Author 刘吉超 * @Date 2016-06-07 22:31:53 */ public class IntPair implements WritableComparable<IntPair>{private int first;private int second;public IntPair(){}public IntPair(int left, int right){set(left, right);}public void set(int left, int right){first = left;second = right;}@Overridepublic void readFields(DataInput in) throws IOException{first = in.readInt();second = in.readInt();}@Overridepublic void write(DataOutput out) throws IOException{out.writeInt(first);out.writeInt(second);}@Overridepublic int compareTo(IntPair o){if (first != o.first){return first < o.first ? -1 : 1;}else if (second != o.second){return second < o.second ? -1 : 1;}else{return 0;}}@Overridepublic int hashCode(){return first * 157 + second;}@Overridepublic boolean equals(Object right){if (right == null)return false;if (this == right)return true;if (right instanceof IntPair){IntPair r = (IntPair) right;return r.first == first && r.second == second;}else{return false;}}public int getFirst(){return first;}public int getSecond(){return second;} }
package com.buaa;import java.io.IOException; import java.util.StringTokenizer;import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.WritableComparable; import org.apache.hadoop.io.WritableComparator; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Partitioner; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;/** * @ProjectName SecondarySort * @PackageName com.buaa * @ClassName SecondarySort * @Description TODO * @Author 刘吉超 * @Date 2016-06-07 22:40:37 */ @SuppressWarnings("deprecation") public class SecondarySort {public static class Map extends Mapper<LongWritable, Text, IntPair, IntWritable> {public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String line = value.toString();StringTokenizer tokenizer = new StringTokenizer(line);int left = 0;int right = 0;if (tokenizer.hasMoreTokens()) {left = Integer.parseInt(tokenizer.nextToken());if (tokenizer.hasMoreTokens())right = Integer.parseInt(tokenizer.nextToken());context.write(new IntPair(left, right), new IntWritable(right));}}}/** 自定义分区函数类FirstPartitioner,根据 IntPair中的first实现分区*/public static class FirstPartitioner extends Partitioner<IntPair, IntWritable>{@Overridepublic int getPartition(IntPair key, IntWritable value,int numPartitions){return Math.abs(key.getFirst() * 127) % numPartitions;}}/** 自定义GroupingComparator类,实现分区内的数据分组*/@SuppressWarnings("rawtypes")public static class GroupingComparator extends WritableComparator{protected GroupingComparator(){super(IntPair.class, true);}@Overridepublic int compare(WritableComparable w1, WritableComparable w2){IntPair ip1 = (IntPair) w1;IntPair ip2 = (IntPair) w2;int l = ip1.getFirst();int r = ip2.getFirst();return l == r ? 0 : (l < r ? -1 : 1);}}public static class Reduce extends Reducer<IntPair, IntWritable, Text, IntWritable> {public void reduce(IntPair key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {for (IntWritable val : values) {context.write(new Text(Integer.toString(key.getFirst())), val);}}}public static void main(String[] args) throws IOException, InterruptedException, ClassNotFoundException {// 读取配置文件Configuration conf = new Configuration();// 判断路径是否存在,如果存在,则删除 Path mypath = new Path(args[1]); FileSystem hdfs = mypath.getFileSystem(conf); if (hdfs.isDirectory(mypath)) { hdfs.delete(mypath, true); } Job job = new Job(conf, "secondarysort");// 设置主类job.setJarByClass(SecondarySort.class);// 输入路径FileInputFormat.setInputPaths(job, new Path(args[0]));// 输出路径FileOutputFormat.setOutputPath(job, new Path(args[1]));// Mapperjob.setMapperClass(Map.class);// Reducerjob.setReducerClass(Reduce.class);// 分区函数job.setPartitionerClass(FirstPartitioner.class);// 本示例并没有自定义SortComparator,而是使用IntPair中compareTo方法进行排序 job.setSortComparatorClass();// 分组函数job.setGroupingComparatorClass(GroupingComparator.class);// map输出key类型job.setMapOutputKeyClass(IntPair.class);// map输出value类型job.setMapOutputValueClass(IntWritable.class);// reduce输出key类型job.setOutputKeyClass(Text.class);// reduce输出value类型job.setOutputValueClass(IntWritable.class);// 输入格式job.setInputFormatClass(TextInputFormat.class);// 输出格式job.setOutputFormatClass(TextOutputFormat.class);System.exit(job.waitForCompletion(true) ? 0 : 1);} }