积跬步至千里 || 数学基础、算法与编程

数学基础、算法与编程

1. BAP 技能

BAP 技能是指基础(Basic)、算法(Algorithm)和编程(Programm)三种基本技能的深度融合。理工科以数学、算法与编程为根基,这三个相辅相成又各有区别。

  • (1)数学以线性代数为主要研究工具和部分微积分技术为手段,来实现优化的目标。

  • (2)算法是应用数学和各类数据分析方法的灵魂,搭建了数学与应用领域的之间的桥梁,通常是一种真实解的逼近过程,其中主要涉及到矩阵的运算。

  • (3)编程泛指一切的计算机语言,通过循环迭代的方式编制出计算过程,如Matlab、Python、C++等,其中会有众多的库可以调用,如scikit-learn、CVX优化库、OpenCV图像处理库等等。

注意:算法和编程是两个严格区分的领域,算法需要深厚的数学功底,编程需要的是简单逻辑。

2. 传统算法

一类常见的算法是误差项 f ( x , w ) f(\boldsymbol{x},\boldsymbol{w}) f(x,w) 和复杂度测度项 g ( w ) g(\boldsymbol{w}) g(w) 的折衷,形如

min ⁡ w f ( x , w ) + g ( w ) \min_{\boldsymbol{w}}\;f(\boldsymbol{x},\boldsymbol{w})+g(\boldsymbol{w}) wminf(x,w)+g(w)

常见的误差项,又称损失函数有以下几种(以回归问题为例)

  • 平方损失

f ( x , w ) = ∥ X w − b ∥ 2 2 = ∑ i ( w i x i − b i ) 2 f(\boldsymbol{x},\boldsymbol{w})=\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2=\sum_i(w_ix_i-b_i)^2 f(x,w)=Xwb22=i(wixibi)2

  • 绝对值损失

f ( x , w ) = ∥ X w − b ∥ 1 = ∑ i ∣ b i − w i x i ∣ f(\boldsymbol{x},\boldsymbol{w})=\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_1=\sum_i\Big\vert b_i-w_ix_i\Big\vert f(x,w)=Xwb1=i biwixi

  • Hubber 损失

Huber = { 1 2 e i 2 ∣ e i ∣ < δ δ ∣ e i ∣ − 1 2 δ 2 Otherwise \text{Huber}=\left\{ \begin{array}{lcl} \frac{1}{2}e_i^2 & & \vert e_i\vert<\delta\\ \delta\vert e_i\vert -\frac{1}{2}\delta^2 & & \text{Otherwise} \end{array} \right. Huber={21ei2δei21δ2ei<δOtherwise

# huber 损失
def huber(e, delta):loss = np.where(np.abs(e) < delta , 0.5*(e**2), delta*np.abs(e) - 0.5*(delta**2))return lossimport numpy as np
import matplotlib.pyplot as plte = np.arange(0,5,0.1)
z1 = 0.5*e**2
z2 = np.abs(e)
z3 = huber(e,1)
z4 = np.log(1+np.abs(e))plt.plot(e,z1,label='L2')
plt.plot(e,z2,label='L1')
plt.plot(e,z3,label='Huber')
plt.plot(e,z4,label='Hx')
plt.title('Loss Function')
plt.axis([0,5,0,12])
plt.legend()
plt.xlabel('e')
plt.ylabel('Eerror')
plt.show()

在这里插入图片描述

常见的目标函数

min ⁡ w ∥ X w − b ∥ 2 2 + ∥ w ∥ 2 2 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2+\Vert \boldsymbol{w}\Vert_2^2 wminXwb22+w22

min ⁡ w ∥ X w − b ∥ 2 2 + ∥ w ∥ 1 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_2^2+\Vert \boldsymbol{w}\Vert_1 wminXwb22+w1

min ⁡ w ∥ X w − b ∥ 1 \min_{\boldsymbol{w}}\;\Vert X\boldsymbol{w}-\boldsymbol{b}\Vert_1 wminXwb1

min ⁡ w ∥ X − U V T ∥ F 2 , s . t . U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_F^2,\;\;\;s.t.\;\;U\geq0,V\geq 0 wminXUVTF2,s.t.U0,V0

min ⁡ w ∥ X − U V T ∥ 1 , s . t . U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_1,\;\;\;s.t.\;\;U\geq0,V\geq 0 wminXUVT1,s.t.U0,V0

min ⁡ w ∥ X − U V T ∥ 2 , 1 , s . t . U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1},\;\;\;s.t.\;\;U\geq0,V\geq 0 wminXUVT2,1,s.t.U0,V0

min ⁡ w ∥ X − U V T ∥ 2 , 1 + ∥ U ∥ 1 , s . t . U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1}+\Vert U\Vert_1,\;\;\;s.t.\;\;U\geq0,V\geq 0 wminXUVT2,1+U1,s.t.U0,V0

min ⁡ w ∥ X − U V T ∥ 2 , 1 + ∥ U ∥ ∗ , s . t . U ≥ 0 , V ≥ 0 \min_{\boldsymbol{w}}\;\Vert X-UV^T\Vert_{2,1}+\Vert U\Vert_*,\;\;\;s.t.\;\;U\geq0,V\geq 0 wminXUVT2,1+U,s.t.U0,V0

可通过一些优化工具箱或者优化工具进行求解

3. 网络优化

通过神经网络或者深度学习进行优化

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53700.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

最新绕过目标域名CDN进行信息收集技术

绕过目标域名CDN进行信息收集 1&#xff0e;CDN简介及工作流程 CDN&#xff08;Content Delivery Network&#xff0c;内容分发网络&#xff09;的目的是通过在现有的网络架构中增加一层新的Cache&#xff08;缓存&#xff09;层&#xff0c;将网站的内容发布到最接近用户的网…

打开软件提示msvcp140.dll丢失的解决方法,msvcp140主要丢失原因

今天&#xff0c;我将为大家介绍一种非常常见的问题——msvcp140.dll丢失。这个问题可能会导致许多应用程序无法正常运行&#xff0c;甚至崩溃。但是&#xff0c;请不要担心&#xff0c;我会为大家提供5种解决方法&#xff0c;帮助大家轻松解决问题。 首先&#xff0c;我们来看…

单片机学习-蜂鸣器电子元件

蜂鸣器是有什么作用的&#xff1f; 蜂鸣器 是 一种 一体化结构 的电子训响器&#xff0c;可以发出声音的电子元器件 蜂鸣器分类&#xff1f; ①压电式蜂鸣器&#xff08;图左&#xff09; 称&#xff1a; 无源蜂鸣器 ②电磁式蜂鸣器&#xff08;图右&#xff09; 称&#xf…

陪诊系统源码开发:实现个性化医疗陪护的创新之路

陪诊系统的源码开发在现代医疗中具有重要意义。本文将通过代码示例介绍陪诊系统的源码开发&#xff0c;展示如何实现个性化医疗陪护的创新方案。 1. 安装和环境设置&#xff1a; 首先&#xff0c;确保你的开发环境中已经安装了合适的编程语言和框架&#xff0c;比如Python和…

人力资源小程序的设计原则与实现方法

随着移动互联网的快速发展&#xff0c;小程序成为了各行各业推广和服务的新利器。对于人力资源行业来说&#xff0c;开发一款定制化的小程序不仅可以提升服务效率&#xff0c;还可以增强品牌形象和用户粘性。那么&#xff0c;如何定制开发人力资源类的小程序呢&#xff1f;下面…

使用Miniconda

Conda是一个开源的包和环境管理器&#xff0c;使用它可以在同一台机器上安装不同版本的Python软件包和依赖了。Anaconda和Miniconda都集成了Conda,Anaconda包括更多的工具包&#xff0c;Miniconda则只包括Conda和Python。 在很奇葩的Deepin下Miniconda安装之旅 中&#xff0c;…

8路光栅尺磁栅尺编码器或16路高速DI脉冲信号转Modbus TCP网络模块 YL99-RJ45

特点&#xff1a; ● 光栅尺磁栅尺解码转换成标准Modbus TCP协议 ● 高速光栅尺磁栅尺4倍频计数&#xff0c;频率可达5MHz ● 模块可以输出5V的电源给光栅尺或传感器供电 ● 支持8个光栅尺同时计数&#xff0c;可识别正反转 ● 可以设置作为16路独立DI高速计数器 ● 可网…

探讨uniapp的组件使用的问题

1 view Flex是Flexible Box的缩写&#xff0c;意为“弹性布局”&#xff0c;用来为盒状模型提供最大的灵活性。 当设置display: flex后&#xff0c;继续给view等容器组件设置flex-direction:row或column&#xff0c;就可以在该容器内按行或列排布子组件。uni-app推荐使用flex布…

LeetCode——有效的括号

这里&#xff0c;我提供一种用栈来解决的方法&#xff1a; 思路&#xff1a;栈的结构是先进后出&#xff0c;这样我们就可以模拟栈结构了&#xff0c;如果是‘&#xff08;’、‘{’、‘[’任何一种&#xff0c;直接push进栈就可以了&#xff0c;如果是‘}’、‘&#xff09;’…

Windows部署SQL Server-开发者版

一、简介 SQL Server 开发者版本&#xff0c;是一个为开发人员准备的版本。它是免费的&#xff0c;但不能在生产中使用它。它包含所有 SQL Server 企业版的功能&#xff0c;但不能在生产中部署&#xff0c;是一个用于非生产环境的免费版本。 二、下载 访问 https://www.mic…

Zabbix监控系统最新版安装

setenforce 0 设置SELinux 成为permissive模式 临时关闭selinux的 [rootwww yum.repos.d]# curl -o /etc/yum.repos.d/CentOS-Base.repo http://mirrors.aliyun.com/repo/Centos-7.repo % Total % Received % Xferd Average Speed Time Time Time Current …

家长如何将ChatGPT成为家庭日常活动的得力助手

人工智能已经在许多领域发挥作用&#xff0c;如播放音乐、关闭灯光和帮助我们更安全地驾驶。那么&#xff0c;在养育孩子方面呢&#xff1f; 使用像ChatGPT这样的应用&#xff0c;家长们可以更好地完成任务&#xff0c;但同时也要了解其中存在的风险。 许多家长表示&#xff…

mall:redis项目源码解析

文章目录 一、mall开源项目1.1 来源1.2 项目转移1.3 项目克隆 二、Redis 非关系型数据库2.1 Redis简介2.2 分布式后端项目的使用流程2.3 分布式后端项目的使用场景2.4 常见的缓存问题 三、源码解析3.1 集成与配置3.1.1 导入依赖3.1.2 添加配置3.1.3 全局跨域配置 3.2 Redis测试…

java并发:synchronized锁详解

背景&#xff1a; 在java多线程当中&#xff0c;我们总有遇到过多个线程操作一个共享数据时&#xff0c;而这个最后的代码执行结果并没有按照我们的预期一样得到正确的结果。此时我们就需要让代码执行在操作共享变量时&#xff0c;要等一个线程操作完毕时&#xff0c;另一个线程…

Python OCR 使用easyocr库将图片中的文章提取出来

Python OCR 使用easyocr库将图片中的文章提取出来 初环境内容步骤一&#xff1a;安装easyocr库步骤二&#xff1a;导入必要的库步骤三&#xff1a;创建OCR阅读器对象步骤四&#xff1a;指定要识别的图片路径步骤五&#xff1a;执行OCR识别并提取文章内容步骤六&#xff1a;遍历…

记录protocol buffers Mac安装

使用brew安装最新的protobuf 在Mac 上安装&#xff0c;使用brew 可以安装最新的protobuf。这个也比较简单&#xff0c;简单说一下。 首先先检查一下是否安装了brew。如果没有安装brew的话&#xff0c;请先安装brew.可以通过brew --version来检查 使用brew install protobuf 来…

国产化-银河麒麟V10系统及docker的安装

一、最近在研究国产化操作系统&#xff0c;“银河麒麟V10”&#xff0c; 在我电脑本机vmware 15的虚拟机中进行安装测试&#xff1b; 1.点击这里提交产品试用申请&#xff0c;不过只需要随便输入&#xff0c;手机号验证码验证后方可跳转至下载地址产品试用申请国产操作系统、银…

器件介绍TMP1826NGRR、TMP1826DGKR、TMP1827NGRR、TMP1075NDRLR数字温度传感器

一、TMP1826 具有 2Kb EEPROM 的 1-Wire、0.2C 精度温度传感器 器件介绍 TMP1826 是一款高精度、1-Wire 兼容的数字输出温度传感器&#xff0c;具有集成的 2Kb EEPROM 和 –55C 至150C 的宽工作温度范围。TMP1826 在 10C 至45C 的温度范围内提供 0.1C&#xff08;典型值&#…

Pycharm链接远程mysql报错

Pycharm链接远程mysql配置及相应报错如下&#xff1a; 解决方法&#xff1a; 去服务器确认Mysql版本号&#xff1a; 我的Mysql为5.7.43&#xff0c;此时Pycharm mysql驱动为8.0版本&#xff0c;不匹配&#xff0c;所以需要根据实际的版本选择对应的驱动&#xff1b;选择对应的版…

【ArcGIS微课1000例】0071:普通最小二乘法 (OLS)回归分析案例

严重声明:本文来自专栏《ArcGIS微课1000例:从点滴到精通》,为CSDN博客专家刘一哥GIS原创,原文及专栏地址为:(https://blog.csdn.net/lucky51222/category_11121281.html),谢绝转载或爬取!!! 文章目录 一、空间自回归模型二、ArcGIS普通最小二乘法回归(OLS)一、空间自…