kube-proxy 通过 Informer知道了Service、endpoints对象的创建,然后把service身上的CLUSTER-IP 和端口已经端点信息拿出来,创建iptable NAT规则做转发或通过ipvs模块创建VS服务器,这样经过CLUSTER-IP的流量都被转发到后端pod。
iptables模式
我们先查看nat表的OUTPUT链,存在kube-proxy创建的KUBE-SERVICE链
iptables -nvL OUTPUT -t nat
在KUBE-SERVICES链中有一条目的地为10.96.148.206即CLUSTER-IP地址跳转到KUBE-SVC-EJUV4ZBKPDWOZNF4
iptables -nvL KUBE-SERVICES -t nat |grep service-demo
接着是查看这条链,以1/3的概率跳转到其中一条
iptables -nvL KUBE-SVC-EJUV4ZBKPDWOZNF4 -t nat
最后KUBE-SEP-BTFJGISFGMEBGVUF链终于找到了DNAT规则
iptables -nvL KUBE-SEP-BTFJGISFGMEBGVUF -t nat
即将请求通过DNAT发送到地址100.101.184.61:9376
也就是我们其中一个Pod。
IPVS模式
与iptalbes模式相比,IPVS模式工作在内核态,在同步代理规则时具有更好的性能,同时提高网络吞吐量为大型集群提供了更好的可扩展性。
IPVS 模式在工作时,当我们创建了前面的 Service 之后,kube-proxy 首先会在宿主机上创建一个虚拟网卡kube-ipvs0,并为它分配 Service VIP 作为 IP 地址,如图
接着kube-proxy通过Linux的IPVS模块为这个 IP 地址添加三个 IPVS 虚拟主机,并设置这三个虚拟主机之间使用轮询模式 来作为负载均衡策略。
通过ipvsadm查看
ipvsadm -ln |grep -C 5 10.96.148.206
可以看到虚拟server的IP即是Pod的地址,这样流量即向了目的地Pod。
以上我们先认识了Service这个API对象,接着讲到了service与endpoints和pod的关联,然后是service与kube-proxy的关系,以及kube-proxy的两种模式如何通过service的IP创建iptables、IPVS规则将流量转发到Pod。