计算图片相似度的方法

文章目录

  • 1.余弦相似度计算
  • 2.哈希算法计算图片的相似度
  • 3.直方图计算图片的相似度
  • 4.SSIM(结构相似度度量)计算图片的相似度
  • 5.基于互信息(Mutual Information)计算图片的相似度

1.余弦相似度计算

把图片表示成一个向量,通过计算向量之间的余弦距离来表征两张图片的相似度。

from PIL import Image
from numpy import average, dot, linalg
# 对图片进行统一化处理
def get_thum(image, size=(64, 64), greyscale=False):# 利用image对图像大小重新设置, Image.ANTIALIAS为高质量的image = image.resize(size, Image.ANTIALIAS)if greyscale:# 将图片转换为L模式,其为灰度图,其每个像素用8个bit表示image = image.convert('L')return image
# 计算图片的余弦距离
def image_similarity_vectors_via_numpy(image1, image2):image1 = get_thum(image1)image2 = get_thum(image2)images = [image1, image2]vectors = []norms = []for image in images:vector = []for pixel_tuple in image.getdata():vector.append(average(pixel_tuple))vectors.append(vector)# linalg=linear(线性)+algebra(代数),norm则表示范数# 求图片的范数norms.append(linalg.norm(vector, 2))a, b = vectorsa_norm, b_norm = norms# dot返回的是点积,对二维数组(矩阵)进行计算res = dot(a / a_norm, b / b_norm)return res
image1 = Image.open('010.jpg')
image2 = Image.open('011.jpg')
cosin = image_similarity_vectors_via_numpy(image1, image2)
print('图片余弦相似度', cosin)

2.哈希算法计算图片的相似度

感知哈希算法是一类算法的总称,包括aHash、pHash、dHash。顾名思义,感知哈希不是以严格的方式计算Hash值,而是以更加相对的方式计算哈希值,因为“相似”与否,就是一种相对的判定。

几种hash值的比较:

aHash:平均值哈希。速度比较快,但是常常不太精确。
pHash:感知哈希。精确度比较高,但是速度方面较差一些。
dHash:差异值哈希。精确度较高,且速度也非常快
值哈希算法、差值哈希算法和感知哈希算法都是值越小,相似度越高,取值为0-64,即汉明距离中,64位的hash值有多少不同。三直方图和单通道直方图的值为0-1,值越大,相似度越高。

import cv2
import numpy as np
from PIL import Image
import requests
from io import BytesIO
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as pltdef aHash(img):# 均值哈希算法# 缩放为8*8img = cv2.resize(img, (8, 8))# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# s为像素和初值为0,hash_str为hash值初值为''s = 0hash_str = ''# 遍历累加求像素和for i in range(8):for j in range(8):s = s+gray[i, j]# 求平均灰度avg = s/64# 灰度大于平均值为1相反为0生成图片的hash值for i in range(8):for j in range(8):if gray[i, j] > avg:hash_str = hash_str+'1'else:hash_str = hash_str+'0'return hash_strdef dHash(img):# 差值哈希算法# 缩放8*8img = cv2.resize(img, (9, 8))# 转换灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)hash_str = ''# 每行前一个像素大于后一个像素为1,相反为0,生成哈希for i in range(8):for j in range(8):if gray[i, j] > gray[i, j+1]:hash_str = hash_str+'1'else:hash_str = hash_str+'0'return hash_strdef pHash(img):# 感知哈希算法# 缩放32*32img = cv2.resize(img, (32, 32))   # , interpolation=cv2.INTER_CUBIC# 转换为灰度图gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)# 将灰度图转为浮点型,再进行dct变换dct = cv2.dct(np.float32(gray))# opencv实现的掩码操作dct_roi = dct[0:8, 0:8]hash = []avreage = np.mean(dct_roi)for i in range(dct_roi.shape[0]):for j in range(dct_roi.shape[1]):if dct_roi[i, j] > avreage:hash.append(1)else:hash.append(0)return hash
def calculate(image1, image2):# 灰度直方图算法# 计算单通道的直方图的相似值hist1 = cv2.calcHist([image1], [0], None, [256], [0.0, 255.0])hist2 = cv2.calcHist([image2], [0], None, [256], [0.0, 255.0])# 计算直方图的重合度degree = 0for i in range(len(hist1)):if hist1[i] != hist2[i]:degree = degree + \(1 - abs(hist1[i] - hist2[i]) / max(hist1[i], hist2[i]))else:degree = degree + 1degree = degree / len(hist1)return degreedef classify_hist_with_split(image1, image2, size=(256, 256)):# RGB每个通道的直方图相似度# 将图像resize后,分离为RGB三个通道,再计算每个通道的相似值image1 = cv2.resize(image1, size)image2 = cv2.resize(image2, size)sub_image1 = cv2.split(image1)sub_image2 = cv2.split(image2)sub_data = 0for im1, im2 in zip(sub_image1, sub_image2):sub_data += calculate(im1, im2)sub_data = sub_data / 3return sub_datadef cmpHash(hash1, hash2):# Hash值对比# 算法中1和0顺序组合起来的即是图片的指纹hash。顺序不固定,但是比较的时候必须是相同的顺序。# 对比两幅图的指纹,计算汉明距离,即两个64位的hash值有多少是不一样的,不同的位数越小,图片越相似# 汉明距离:一组二进制数据变成另一组数据所需要的步骤,可以衡量两图的差异,汉明距离越小,则相似度越高。汉明距离为0,即两张图片完全一样n = 0# hash长度不同则返回-1代表传参出错if len(hash1) != len(hash2):return -1# 遍历判断for i in range(len(hash1)):# 不相等则n计数+1,n最终为相似度if hash1[i] != hash2[i]:n = n + 1return ndef getImageByUrl(url):# 根据图片url 获取图片对象html = requests.get(url, verify=False)image = Image.open(BytesIO(html.content))return imagedef PILImageToCV():# PIL Image转换成OpenCV格式path = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"img = Image.open(path)plt.subplot(121)plt.imshow(img)print(isinstance(img, np.ndarray))img = cv2.cvtColor(np.asarray(img), cv2.COLOR_RGB2BGR)print(isinstance(img, np.ndarray))plt.subplot(122)plt.imshow(img)plt.show()def CVImageToPIL():# OpenCV图片转换为PIL imagepath = "/Users/waldenz/Documents/Work/doc/TestImages/t3.png"img = cv2.imread(path)# cv2.imshow("OpenCV",img)plt.subplot(121)plt.imshow(img)img2 = Image.fromarray(cv2.cvtColor(img, cv2.COLOR_BGR2RGB))plt.subplot(122)plt.imshow(img2)plt.show()def bytes_to_cvimage(filebytes):# 图片字节流转换为cv imageimage = Image.open(filebytes)img = cv2.cvtColor(np.asarray(image), cv2.COLOR_RGB2BGR)return imgdef runAllImageSimilaryFun(para1, para2):# 均值、差值、感知哈希算法三种算法值越小,则越相似,相同图片值为0# 三直方图算法和单通道的直方图 0-1之间,值越大,越相似。 相同图片为1# t1,t2   14;19;10;  0.70;0.75# t1,t3   39 33 18   0.58 0.49# s1,s2  7 23 11     0.83 0.86  挺相似的图片# c1,c2  11 29 17    0.30 0.31if para1.startswith("http"):# 根据链接下载图片,并转换为opencv格式img1 = getImageByUrl(para1)img1 = cv2.cvtColor(np.asarray(img1), cv2.COLOR_RGB2BGR)img2 = getImageByUrl(para2)img2 = cv2.cvtColor(np.asarray(img2), cv2.COLOR_RGB2BGR)else:# 通过imread方法直接读取物理路径img1 = cv2.imread(para1)img2 = cv2.imread(para2)hash1 = aHash(img1)hash2 = aHash(img2)n1 = cmpHash(hash1, hash2)print('均值哈希算法相似度aHash:', n1)hash1 = dHash(img1)hash2 = dHash(img2)n2 = cmpHash(hash1, hash2)print('差值哈希算法相似度dHash:', n2)hash1 = pHash(img1)hash2 = pHash(img2)n3 = cmpHash(hash1, hash2)print('感知哈希算法相似度pHash:', n3)n4 = classify_hist_with_split(img1, img2)print('三直方图算法相似度:', n4)n5 = calculate(img1, img2)print("单通道的直方图", n5)print("%d %d %d %.2f %.2f " % (n1, n2, n3, round(n4[0], 2), n5[0]))print("%.2f %.2f %.2f %.2f %.2f " % (1-float(n1/64), 1 -float(n2/64), 1-float(n3/64), round(n4[0], 2), n5[0]))plt.subplot(121)plt.imshow(Image.fromarray(cv2.cvtColor(img1, cv2.COLOR_BGR2RGB)))plt.subplot(122)plt.imshow(Image.fromarray(cv2.cvtColor(img2, cv2.COLOR_BGR2RGB)))plt.show()if __name__ == "__main__":p1="https://ww3.sinaimg.cn/bmiddle/007INInDly1g336j2zziwj30su0g848w.jpg"p2="https://ww2.sinaimg.cn/bmiddle/007INInDly1g336j10d32j30vd0hnam6.jpg"runAllImageSimilaryFun(p1,p2)

3.直方图计算图片的相似度

利用直方图计算图片的相似度时,是按照颜色的全局分布情况来看待的,无法对局部的色彩进行分析,同一张图片如果转化成为灰度图时,在计算其直方图时差距就更大了。对于灰度图可以将图片进行等分,然后在计算图片的相似度。

# 将图片转化为RGB
def make_regalur_image(img, size=(64, 64)):gray_image = img.resize(size).convert('RGB')return gray_image# 计算直方图
def hist_similar(lh, rh):assert len(lh) == len(rh)hist = sum(1 - (0 if l == r else float(abs(l - r)) / max(l, r)) for l, r in zip(lh, rh)) / len(lh)return hist# 计算相似度
def calc_similar(li, ri):calc_sim = hist_similar(li.histogram(), ri.histogram())return calc_simif __name__ == '__main__':image1 = Image.open('123.jpg')image1 = make_regalur_image(image1)image2 = Image.open('456.jpg')image2 = make_regalur_image(image2)print("图片间的相似度为", calc_similar(image1, image2))

4.SSIM(结构相似度度量)计算图片的相似度

SSIM是一种全参考的图像质量评价指标,分别从亮度、对比度、结构三个方面度量图像相似性。SSIM取值范围[0, 1],值越大,表示图像失真越小。在实际应用中,可以利用滑动窗将图像分块,令分块总数为N,考虑到窗口形状对分块的影响,采用高斯加权计算每一窗口的均值、方差以及协方差,然后计算对应块的结构相似度SSIM,最后将平均值作为两图像的结构相似性度量,即平均结构相似性SSIM。

# -*- coding: utf-8 -*-
from skimage.measure import compare_ssim
from scipy.misc import imread
import numpy as np
# 读取图片
img1 = imread('../dataset/100002.png')
img2 = imread('../dataset/100001.png')
img2 = np.resize(img2, (img1.shape[0], img1.shape[1], img1.shape[2]))
print(img1.shape)
print(img2.shape)
ssim =  compare_ssim(img1, img2, multichannel = True)
print(ssim)

5.基于互信息(Mutual Information)计算图片的相似度

通过计算两个图片的互信息来表征他们之间的相似度,如果两张图片尺寸相同,还是能在一定程度上表征两张图片的相似性的。但是,大部分情况下图片的尺寸不相同,如果把两张图片尺寸调成相同的话,又会让原来很多的信息丢失,所以很难把握。经过实际验证,此种方法的确很难把握。

from sklearn import metrics as mr
from scipy.misc import imread
import numpy as npimg1 = imread('1.jpg')
img2 = imread('2.jpg')img2 = np.resize(img2, (img1.shape[0], img1.shape[1], img1.shape[2]))img1 = np.reshape(img1, -1)
img2 = np.reshape(img2, -1)
print(img2.shape)
print(img1.shape)
mutual_infor = mr.mutual_info_score(img1, img2)print(mutual_infor)

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/535194.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

.size .shape .size() type的运用

.size ndarray.size 数组元素的总个数,相当于 .shape 中 n*m 的值 a np.array([2,2]) print(a.size)2.shap ndarray.shape 数组的维度,对于矩阵,n 行 m 列 a np.array([2,2]) print(a.shape) (1,2)torch.tensor 数组的维度 x torch.r…

矩阵相加

tensor 类型 a torch.randn(1,3,3) b torch.randn(1,3,3) c a b numpy.array 类型 a np.array([2,2]) b np.array([2,2]) print(type(a)) print(ab)[4,4]

Latex 生成的PDF增加行号 左右两边

增加行号 \usepackage[switch]{lineno}\linenumbers \begin{document} \end{document}

pytorh .to(device) 和.cuda()的区别

原理 .to(device) 可以指定CPU 或者GPU device torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 单GPU或者CPU model.to(device) #如果是多GPU if torch.cuda.device_count() > 1:model nn.DataParallel(model,devic…

Linux 修改用户名的主目录 家目录

首先root 登陆 sudo -i 输入密码然后 vim /etc/passwd 找到用户名 然后修改后面的路径即可

ubunt16.04 安装3090显卡驱动 cuda cudnn pytorch

安装驱动 需要的安装包 30系列显卡是新一代架构,新驱动不支持cuda9以及cuda10,所以必须安装cuda11、而pytorch现在稳定版为1.6,最高仅支持到cud10.2。所以唯一的办法就是使用上处于beta测试的1.7或1.8。这也是为啥一开始就强调本文的写作时…

3090显卡 torch.cuda.is_available()返回false的解决办法

问题 1.执行Nvidia-smi 命令没有报错,能够显示驱动信息; 2.执行 torch.backends.cudnn.enabled is TRUE 3.torch.cuda.is_available()一直返回False 解决 把torch,torchvision等相关安装包全部删除,安装适合版本的torch。 30系…

测试项目:车牌检测,行人检测,红绿灯检测,人流检测,目标识别

本项目为2020年中国软件杯A组第一批赛题"基于计算机视觉的交通场景智能应用".项目用python实现,主要使用YOLO模型实现道路目标如人、车、交通灯等物体的识别,使用开源的"中文车牌识别HyperLPR&a…

pytorch: 在训练中保存模型,加载模型

文章目录1. 保存整个模型2.仅保存和加载模型参数(推荐使用)3. 保存其他参数到模型中,比如optimizer,epoch 等1. 保存整个模型 torch.save(model, model.pkl) model torch.load(model.pkl)2.仅保存和加载模型参数(推荐使用) torch.save(model_object.state_dict()…

Pytorch:保存图片

1. 直接保存Tensor #!/usr/bin/env python # _*_ coding:utf-8 _*_ import torch from torchvision import utils as vutilsdef save_image_tensor(input_tensor: torch.Tensor, filename):"""将tensor保存为图片:param input_tensor: 要保存的tensor:param fi…

Python List:合并多个list,listd的合并

第一种方法 a [1,3,3] b [2,3,3] a a b print(a) [1,3,3,2,3,3]第二种方法 a [1,3,3] b [2,3,3] a.extend(b) print(a) [1,3,3,2,3,3]

挂载硬盘问题:mount: wrong fs type, bad option, bad superblock on /dev/sdb,

mount: wrong fs type, bad option, bad superblock on /dev/sdb,missing codepage or helper program, or other error 解决方案: # create mount dir sudo mkdir /hdd6T# new file system sudo mkfs.ext4 /dev/sdc# mount drive sudo mount /dev/sdc /hdd6T/# c…

linux 安装python3.8的几种方法

1.命令行搞定 git clone https://github.com/waketzheng/carstino cd carstino python3 upgrade_py.py2.离线安装 自己在官网下载安装包 https://www.python.org/ftp/python/3.8.0/ 解压: tar -zvf Python-3.8.0.tgz安装 cd Python-3.8.0 ./configure --prefix/u…

面试题目:欠拟合、过拟合及如何防止过拟合

对于深度学习或机器学习模型而言,我们不仅要求它对训练数据集有很好的拟合(训练误差),同时也希望它可以对未知数据集(测试集)有很好的拟合结果(泛化能力),所产生的测试误…

LaTeX:equation, aligned 书写公式换行,顶部对齐

使用aligined 函数,其中aligned就是用来公式对齐的,在中间公式中,\ 表示换行, & 表示对齐。在公式中等号之前加&,等号介绍要换行的地方加\就可以了。 \begin{equation} \begin{aligned} L_{task} &\lamb…

Latex: 表格中 自动换行居中

1、在导言区添加宏包: \usepackage{makecell}2、环境:tabular 命令: \makecell[居中情况]{第1行内容 \\ 第2行内容 \\ 第3行内容 ...} \makecell [c]{ResNet101\\ (11.7M)}参数说明: [c]是水平居中,[l]水平左居中&am…

argparse:shell向Python中传参数

一般是 python train.py --bath_size 5利用argparse解析参数 import argparse parser argparse.ArgumentParser() parser.add_argument(integer, typeint, helpdisplay an integer) args parser.parse_args()参数类型 可选参数 import argparse parser argparse.Argumen…

FTP命令:下载,上传FTP服务器中的文件

步骤 1: 建立 FTP 连接 想要连接 FTP 服务器,在命令上中先输入ftp然后空格跟上 FTP 服务器的域名 domain.com 或者 IP 地址例如:1.ftp domain.com2.ftp 192.168.0.13.ftp userftpdomain.com注意: 本例中使用匿名服务器。替换下面例子中 IP 或域名为你的服务器地址。…

Tensorflow代码转pytorch代码 函数的转换

tensoflow函数和pytorch函数之间的转换 tensorflowpytrochtf.reshape(input, shape)input.view()tf.expand_dims(input, dim)input.unsqueeze(dim) / input.view()tf.squeeze(input, dim)torch.squeeze(dim)/ input.view()tf.gather(input1, input2)input1[input2]tf.tile(inp…

在服务器上远程使用tensorboard查看训练loss和准确率

本人使用的是vscode 很简单 from torch.utils.tensorboard import SummaryWriter writer SummaryWriter(./logs)writer.add_scalar(train_loss,loss.val(),iteration) # 名字,数据,迭代次数训练的过程中会产生一个./logs的文件夹,里面存放的…