5分钟理解NPL算法 之 马尔可夫链 Markov Chain

马尔可夫链(Markov Chain)

马尔可夫链是一种简单的推理模型。用于描述受当前事件影响下的下一事件发生概率。在预测学科中广泛应用。例如股票预测、文字推理、路线推荐等。

他的核心思路是:假设事件顺序为: X 1 , X 2 , X 3 , . . . . . X_1, X_2, X_3, ..... X1,X2,X3,.....
那么马尔可夫链认为, X 2 的值只与 X 1 的值有关,同样, X 3 的值也只与 X 2 的值有关 X_2的值只与X_1的值有关,同样,X_3的值也只与X_2的值有关 X2的值只与X1的值有关,同样,X3的值也只与X2的值有关

举个栗子

假设你正在策划旅游路线,当然是希望旅游地点之间是相近的且有序的,所以你的第一站目的地会理所应当的会直接影响第二站的选择。以北京和深圳为例:

0.3
0.7
0.2
0.5
北京
深圳

以矩阵方式描述就显得更直观些:
下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 下一站概率= P=\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 下一站概率=P= 北京深圳北京0.20.7深圳0.30.5
如上所示,如果你现在身在北京,下一站为深圳的概率是0.3,继续停留在北京的概率是0.2,
如果当前身在深圳,下一站去北京的概率是0.7,继续停留在深圳的概率是0.5

那如果我想知道,已经在两地辗转移动两次后的下一站概率怎么办呢?
只需要将前后的关系矩阵相乘:

移动 2 次后的下一站概率 = P = [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] [ 北京 深圳 北京 0.2 0.3 深圳 0.7 0.5 ] 移动2次后的下一站概率 = P= \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 & 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] \left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2& 0.3 \\ 深圳 & 0.7 & 0.5 \\ \end{matrix} \right] 移动2次后的下一站概率=P= 北京深圳北京0.20.7深圳0.30.5 北京深圳北京0.20.7深圳0.30.5

= [ 北京 深圳 北京 0.2 ∗ 0.2 + 0.3 ∗ 0.7 0.2 ∗ 0.3 + 0.3 ∗ 0.5 深圳 0.7 ∗ 0.2 + 0.5 ∗ 0.7 0.7 ∗ 0.3 + 0.5 ∗ 0.5 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 & 0.2 * 0.2 + 0.3 *0.7 & 0.2* 0.3+0.3*0.5 \\ 深圳 & 0.7 * 0.2 + 0.5*0.7 & 0.7*0.3 + 0.5*0.5 \\ \end{matrix} \right] = 北京深圳北京0.20.2+0.30.70.70.2+0.50.7深圳0.20.3+0.30.50.70.3+0.50.5
= [ 北京 深圳 北京 0.25 0.21 深圳 0.49 0.46 ] =\left[ \begin{matrix} & 北京 & 深圳 \\ 北京 &0.25 & 0.21\\ 深圳 & 0.49 & 0.46\\ \end{matrix} \right] = 北京深圳北京0.250.49深圳0.210.46
结论:在两地移动2次后,如果当前在北京,继续留在北京的概率是0.25,去深圳的概率是0.21.
如果当前在深圳,继续留在深圳的概率是0.46,去北京的概率是0.49

结论

由此可以推断马尔可夫链的三个主要特征是:

  1. 状态空间:选择范围是有限集
  2. 无记忆性:预测仅与上一状态相关联
  3. 转移矩阵:通过矩阵相乘可计算出概率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/53486.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【学习笔记】[ABC274Ex] XOR Sum of Arrays

有点难😅 真的是 A B C ABC ABC的难度吗😅 非常精妙的哈希题目。 定义矩阵乘法: c i , j ⊕ ( a i , k & b k , j ) c_{i,j}\oplus (a_{i,k}\& b_{k,j}) ci,j​⊕(ai,k​&bk,j​) 之所以可以矩阵乘法是因为满足 ( a ⊕ b )…

Java设计模式-职责链模式

1 概述 在现实生活中,常常会出现这样的事例:一个请求有多个对象可以处理,但每个对象的处理条件或权限不同。例如,公司员工请假,可批假的领导有部门负责人、副总经理、总经理等,但每个领导能批准的天数不同…

【ArcGIS微课1000例】0073:ArcGIS探索性回归分析案例

一、探索性回归工具简介 “探索性回归”工具会对输入的候选解释变量的所有可能组合进行评估,以便根据用户所指定的指标来查找能够最好地对因变量做出解释的 OLS 模型。 给定一组候选解释变量,找出正确指定的 OLS 模型: 用法: 工具还会生成一个可选表,该表包括所有满足…

Go和Java实现责任链模式

Go和Java实现责任链模式 下面通过一个审批流程的案例来说明责任链模式的使用。 1、责任链模式 责任链模式为请求创建了一个接收者对象的链。这种模式给予请求的类型,对请求的发送者和接收者进行解耦。这 种类型的设计模式属于行为型模式。 在这种模式中&#x…

React re-render

What is? react的渲染分为两个阶段: render,组件第一次出现在屏幕上的时候触发re-render, 组件第一次渲染之后的渲染 当app的数据更新时(用户手动更新、或异步请求)。 When? re-render发生有四种可能: state改变…

06-Numpy基础-线性代数

线性代数(如矩阵乘法、矩阵分解、行列式以及其他方阵数学等)是任何数组库的重要组成部分。 NumPy提供了一个用于矩阵乘法的dot函数(既是一个数组方法也是numpy命名空间中的一个函数) x.dot(y)等价于np.dot(x, y) 符(…

2023年高教社杯 国赛数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 (赛题出来以后第一时间在CSDN分享) https://blog.csdn.net/dc_sinor?typeblog 1 描述 …

当数据库表中某个字段内容很大带来的影响

目录 影响原因 影响原因 当某个字段的内容比较大时,会导致查询缓慢,具体原因如下所示 磁盘IO成本增加:页块是数据库中数据的基本存储单位,通常一个页块的大小为16KB。如果查询的数据分布在不同的页块上,数据库需要进行…

MongoDB Long 类型 shell 查询

场景 1、某数据ID为Long类型,JAVA 定义实体类 Id Long id 2、查询数据库,此数据存在 3、使用 shell 查询,查不到数据 4、JAVA代码查询Query.query 不受任何影响 分析 尝试解决(一) long 在 mongo中为 int64 类型…

【android12-linux-5.1】【ST芯片】HAL移植后没调起来

ST传感器芯片HAL按官方文档移植后&#xff0c;测试一直掉不起来&#xff0c;加的日志没出来。经过分析&#xff0c;是系统自带了一个HAL&#xff0c;影响的。 按照官方文档&#xff0c;移植HAL后&#xff0c;在/device/<vendor\>/<board\>/device.mk*路径增加PROD…

英语常用的介词

一、常用介词 介词&#xff08;Preposition&#xff09;是英语语法中的一类词语&#xff0c;用于连接名词、代词或名词性短语与其他词语&#xff0c;以指示位置、方向、时间、关系等概念。介词的最原始含义通常与空间、时间、方向或关系有关。以下是一些常见的介词及其最原始的…

运维高级学习--Kubernetes(K8s 1.28.x)部署

一、基础环境配置&#xff08;所有主机操作&#xff09; 主机名规划 序号 主机ip 主机名规划1 192.168.1.30 kubernetes-master.openlab.cn kubernetes-master2 192.168.1.31 kubernetes-node1.openlab.cn kubernetes-node13 192.168.1.32 kubernetes-node2…

从零开始的Hadoop学习(二)| Hadoop介绍、优势、组成、HDFS架构

1. Hadoop 是什么 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。主要解决&#xff0c;海量数据的存储和海量数据的分析计算问题。广义上来说&#xff0c;Hadoop通常是指一个更广泛的概念—Hadoop生态圈。 2. Hadoop 的优势 高可靠性&#xff1a;Hadoop底层维护多…

基于Centos搭建k8s仓库

系统环境&#xff1a; Red Hat Enterprise Linux 9.1 (Plow) Kernel: Linux 5.14.0-162.6.1.el9_1.x86_64 主机名地址master192.168.19.128node01192.168.19.129node02192.168.19.130 目录 1、关闭防火墙&#xff0c;关闭SElinxu &#xff0c;开启时间同步服务 2、关…

动态表情包怎么制作?分享一个一键生成gif动图的方法

跟朋友聊天时&#xff0c;经常会用很多有趣的表情包给朋友回复&#xff0c;那么除了利用系统提供的gif动画包&#xff0c;怎么才能完成gif图片制作&#xff08;https://www.gif.cn&#xff09;呢&#xff1f;下面就为大家分享一个一键生成gif动图的方法&#xff0c;通过简单的操…

React 18 用 State 响应输入

参考文章 用 State 响应输入 React 控制 UI 的方式是声明式的。不必直接控制 UI 的各个部分&#xff0c;只需要声明组件可以处于的不同状态&#xff0c;并根据用户的输入在它们之间切换。这与设计师对 UI 的思考方式很相似。 声明式 UI 与命令式 UI 的比较 当设计 UI 交互时…

Python爬虫猿人学逆向系列——第六题

题目&#xff1a;采集全部5页的彩票数据&#xff0c;计算全部中奖的总金额&#xff08;包含一、二、三等奖&#xff09; 地址&#xff1a;https://match.yuanrenxue.cn/match/6 本题比较简单&#xff0c;只是容易踩坑。话不多说请看分析。 两个参数&#xff0c;一个m一个f&…

软考高级系统架构设计师系列之:论文典型试题写作要点和写作素材总结系列文章四

软考高级系统架构设计师系列之:论文典型试题写作要点和写作素材总结系列文章四 一、论软件的静态演化和动态演化及其应用1.论文题目2.写作要点和写作素材二、论大规模分布式系统缓存设计策略1.论文题目2.写作要点和写作素材三、论基于REST服务的Web应用系统设计1.论文题目2.写…

SpringBoot原理

一、Bean原理 1、配置文件的优先级 SpringBoot项目当中支持的三类配置文件&#xff1a; ​ - application.properties - application.yml - application.yaml 配置文件优先级排名&#xff08;从高到低&#xff09;&#xff1a; 1. properties配置文件 2. yml配置文件 3. yaml…

【PHP】PHP变量

1、变量介绍 PHP 是一门弱类型语言&#xff0c;不必向 PHP 声明该变量的数据类型。PHP 会根据变量的值&#xff0c;自动把变量转换为正确的数据类型。在强类型的编程语言中&#xff0c;必须在使用变量前先声明&#xff08;定义&#xff09;变量的类型和名称。 <?php $x5;…