深度学习——LSTM解决分类问题

RNN基本介绍

概述

循环神经网络(Recurrent Neural Network,RNN)是一种深度学习模型,主要用于处理序列数据,如文本、语音、时间序列等具有时序关系的数据。

核心思想

RNN的关键思想是引入了循环结构,允许信息在网络内部进行传递。与传统的前馈神经网络(Feedforward Neural Network)不同,RNN在处理序列数据时会保留并利用先前的信息来影响后续的输出。

基本结构

RNN的基本结构是一个被称为“循环单元”(recurrent unit)的模块,它接收输入和先前的隐藏状态,并生成输出和新的隐藏状态。循环单元中的权重参数在时间步之间是共享的,这意味着它可以对序列中的不同位置应用相同的操作。

计算过程

RNN在每个时间步的计算过程如下:
1.接收当前时间步的输入和先前时间步的隐藏状态。
2.使用这些输入和隐藏状态计算当前时间步的输出。
3.更新隐藏状态,以便在下一个时间步使用。

优点

由于RNN具有循环结构,它可以在处理序列数据时保持记忆,并捕捉到序列中的长期依赖关系。这使得RNN在许多任务中表现出色,例如语言建模、机器翻译、语音识别、情感分析等。

缺点

然而,传统的RNN在处理长期依赖时存在梯度消失或梯度爆炸的问题,导致难以捕捉到远距离的依赖关系。

LSTM基本介绍

概述

LSTM(Long Short-Term Memory,长短期记忆网络)是一种循环神经网络(RNN)的改进型结构,用于解决传统RNN中的长期依赖问题。相比于传统的RNN,LSTM引入了门控机制,能够更好地捕捉和处理序列数据中的长期依赖关系。

核心思想

LSTM的核心思想是引入了三个门控单元:输入门(Input Gate)、遗忘门(Forget Gate)和输出门(Output Gate)。这些门控单元允许LSTM网络选择性地保留或丢弃信息,并且在传递信息时能够有效地控制梯度的流动。

基本结构

以下是LSTM中各个门控单元的功能:
1.输入门(Input Gate):决定当前时间步的输入信息中哪些部分需要被记忆。它使用sigmoid函数来产生一个0到1之间的值,描述了每个输入的重要性。
2.遗忘门(Forget Gate):决定之前的隐藏状态中哪些信息需要被遗忘。通过使用sigmoid函数,遗忘门可以控制先前的隐藏状态在当前时间步的重要性。
3.输出门(Output Gate):根据当前时间步的输入和之前的隐藏状态,决定应该输出多少信息到下一个时间步。输出门使用sigmoid函数来控制隐藏状态中的信息量,并使用tanh函数来生成当前时间步的输出。

优点

通过使用这些门控单元,LSTM网络能够在处理序列数据时灵活地控制信息的流动和记忆的保留。这使得LSTM能够更好地处理长期依赖关系,并在各种序列建模任务中表现出色,例如机器翻译、语音识别、文本生成等。

代码与详细注释

import torch
from torch import nn
import torchvision.datasets as dsets
import torchvision.transforms as transforms
import matplotlib.pyplot as plt# 可复现
# torch.manual_seed(1)    # reproducible# Hyper Parameters
EPOCH = 1               # train the training data n times, to save time, we just train 1 epoch
# 批大小
BATCH_SIZE = 64
TIME_STEP = 28          # rnn time step / image height
INPUT_SIZE = 28         # rnn input size / image width
LR = 0.01               # learning rate
DOWNLOAD_MNIST = True   # set to True if haven't download the data# Mnist digital dataset
train_data = dsets.MNIST(root='./mnist/',train=True,                         # this is training datatransform=transforms.ToTensor(),    # Converts a PIL.Image or numpy.ndarray to# torch.FloatTensor of shape (C x H x W) and normalize in the range [0.0, 1.0]download=DOWNLOAD_MNIST,            # download it if you don't have it
)# plot one example
print(train_data.train_data.size())     # (60000, 28, 28)
print(train_data.train_labels.size())   # (60000)
plt.imshow(train_data.train_data[0].numpy(), cmap='gray')
plt.title('%i' % train_data.train_labels[0])
plt.show()# Data Loader for easy mini-batch return in training
train_loader = torch.utils.data.DataLoader(dataset=train_data, batch_size=BATCH_SIZE, shuffle=True)# convert test data into Variable, pick 2000 samples to speed up testing
test_data = dsets.MNIST(root='./mnist/', train=False, transform=transforms.ToTensor())
test_x = test_data.test_data.type(torch.FloatTensor)[:2000]/255.   # shape (2000, 28, 28) value in range(0,1)
test_y = test_data.test_labels.numpy()[:2000]    # covert to numpy arrayclass RNN(nn.Module):def __init__(self):super(RNN, self).__init__()self.rnn = nn.LSTM(         # if use nn.RNN(), it hardly learnsinput_size=INPUT_SIZE,hidden_size=64,         # rnn hidden unitnum_layers=1,           # number of rnn layerbatch_first=True,       # input & output will has batch size as 1s dimension. e.g. (batch, time_step, input_size))self.out = nn.Linear(64, 10)def forward(self, x):# 输入向量的形状# x shape (batch, time_step, input_size)# r_out shape (batch, time_step, output_size)# h_n shape (n_layers, batch, hidden_size)# h_c shape (n_layers, batch, hidden_size)r_out, (h_n, h_c) = self.rnn(x, None)   # None represents zero initial hidden state# choose r_out at the last time step# 选择输出最后一步的r_outout = self.out(r_out[:, -1, :])return outrnn = RNN()
print(rnn)optimizer = torch.optim.Adam(rnn.parameters(), lr=LR)   # optimize all cnn parameters
loss_func = nn.CrossEntropyLoss()                       # the target label is not one-hotted# training and testing
for epoch in range(EPOCH):for step, (b_x, b_y) in enumerate(train_loader):        # gives batch datab_x = b_x.view(-1, 28, 28)              # reshape x to (batch, time_step, input_size)output = rnn(b_x)                               # rnn outputloss = loss_func(output, b_y)                   # cross entropy lossoptimizer.zero_grad()                           # clear gradients for this training steploss.backward()                                 # backpropagation, compute gradientsoptimizer.step()                                # apply gradients# 每训练50步之后,测试一下准确度if step % 50 == 0:test_output = rnn(test_x)                   # (samples, time_step, input_size)pred_y = torch.max(test_output, 1)[1].data.numpy()accuracy = float((pred_y == test_y).astype(int).sum()) / float(test_y.size)print('Epoch: ', epoch, '| train loss: %.4f' % loss.data.numpy(), '| test accuracy: %.2f' % accuracy)# print 10 predictions from test data
test_output = rnn(test_x[:10].view(-1, 28, 28))
pred_y = torch.max(test_output, 1)[1].data.numpy()
print(pred_y, 'prediction number')
print(test_y[:10], 'real number')

运行结果

在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5340.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

什么是剪贴板劫持-剪贴板劫持教程

目录 前言 什么是剪贴板劫持如何避免剪贴板劫持?如何执行剪贴板劫持? 总结 前言 我来写剪贴板劫持教程。 什么是剪贴板劫持 剪贴板劫持是一种危险的攻击技术,借助该攻击者可以控制受害者的剪贴板并将恶意代码粘贴到目标机器中,…

基于单片机的语音识别智能垃圾桶垃圾分类的设计与实现

功能介绍 以51单片机作为主控系统;液晶显示当前信息和状态;通过语音识别模块对当前垃圾种类进行语音识别; 通过蜂鸣器进行声光报警提醒垃圾桶已满;采用舵机控制垃圾桶打开关闭;超声波检测当前垃圾桶满溢程度&#xff1…

认识spring项目的创建 和 从spring中进行Bean对象的存取

前言 本篇简单介绍如何创建spring项目,如何存储到spring容器中,如何从容器中获取Bean对象,如有错误,请在评论区指正,让我们一起交流,共同进步! 文章目录 前言1. 创建spring项目2. 将Bean对象存…

RS485/RS232自由转ETHERNET/IP网关rs485和232接口一样吗

你是否曾经遇到过这样的问题:如何将ETHERNET/IP网络和RS485/RS232总线连接起来呢? 远创智控的YC-EIP-RS485/232通讯网关,自主研发的ETHERNET/IP从站功能,完美解决了这个难题。这款网关不仅可以将ETHERNET/IP网络和RS485/RS232总线…

服务器数据恢复-ESX SERVER无法连接到STORAGE的数据恢复案例

服务器数据恢复环境: 某公司信息管理平台,数台VMware ESX SERVER虚拟机共享一台IBM某型号存储。 服务器故障: VC报告虚拟磁盘丢失,管理员ssh到ESX中执行fdisk -l命令查看磁盘,发现STORAGE已经没有分区表了。重启设备后…

WAIC2023:图像内容安全黑科技助力可信AI发展

目录 0 写在前面1 AI图像篡改检测2 生成式图像鉴别2.1 主干特征提取通道2.2 注意力模块2.3 纹理增强模块 3 OCR对抗攻击4 助力可信AI向善发展总结 0 写在前面 2023世界人工智能大会(WAIC)已圆满结束,恰逢全球大模型和生成式人工智能蓬勃兴起之时,今年参…

C++第五讲

思维导图 续&#xff1a;myString类完善 /* ---------------------------------author&#xff1a;YoungZorncreated on 2023/7/19 19:20.--------------------------------- */ #include<iostream> #include<cstring>using namespace std;class myString { priva…

社区发现相关算法

目录 **社区检测与聚类****社区检测技术**1. Louvain 社区检测[2]2. Surprise社区检测[3]3. 莱顿社区检测[4]4. Walktrap 社区检测[5] 结论5.LPA 标签传播6.K-L算法7.GN算法8.Newman快速算法 SlashBurn: Graph Compression and Mining beyond Caveman CommunitiesReferences 摘…

WebSocket笔记

1. websocket介绍 WebSocket 是基于 TCP 的一种新的网络协议。它实现了浏览器与服务器全双工通信——浏览器和服务器只需要完成一次握手&#xff0c;两者之间就可以创建持久性的连接&#xff0c; 并进行双向数据传输。 HTTP协议和WebSocket协议对比&#xff1a; HTTP是短连接W…

【EXCEL】通过url获取网页表格数据

目录 0.环境 1.背景 2.具体操作 0.环境 windows excel2021 1.背景 之前我用python的flask框架的爬虫爬取过豆瓣网的电影信息&#xff0c;没想到excel可以直接通过url去获取网页表格内的信息&#xff0c;比如下图这是电影信息界面 即将上映电影 (douban.com) 通过excel操作&…

商品信息管理-亿发商品进销存管理系统,批发行业零售门店免费试用

众所周知&#xff0c;批发零售行业面临着商品品类繁多、品牌众多、商品信息量庞大等挑战。同时&#xff0c;商品售价波动频繁&#xff0c;还需要管理商品批次&#xff0c;避免积压过期。针对这些传统批发零售行业的管理难题&#xff0c;加快行业数字化转型成为解决之道&#xf…

不同局域网下使用Python自带HTTP服务进行文件共享「端口映射」

文章目录 1. 前言2. 视频教程3. 本地文件服务器搭建3.1 python的安装和设置3.2 cpolar的安装和注册 4. 本地文件服务器的发布4.1 Cpolar云端设置4.2 Cpolar本地设置 5. 公网访问测试6. 结语 1. 前言 数据共享作为和连接作为互联网的基础应用&#xff0c;不仅在商业和办公场景有…

目标检测——FasterRCNN原理与实现

目录 网络工作流程数据加载模型加载模型预测过程RPN获取候选区域FastRCNN进行目标检测 模型结构详解backboneRPN网络anchorsRPN分类RPN回归Proposal层 ROIPooling目标分类与回归 FasterRCNN的训练RPN网络的训练正负样本标记RPN网络的损失函数训练过程实现正负样本设置损失函数 …

Apache Doris (三十):Doris 数据导入(八)Spark Load 3- 导入HDFS数据

目录 1. 准备HDFS数据 2. 创建Doris表 3. 创建Spark Load导入任务 4. 查看导入任务状态 进入正文之前&#xff0c;欢迎订阅专题、对博文点赞、评论、收藏&#xff0c;关注IT贫道&#xff0c;获取高质量博客内容&#xff01; 宝子们订阅、点赞、收藏不迷路&#xff01;抓紧…

echarts实现渐变折线图并添加点击事件

折线图点击事件代码: let myChart = this.$echarts.init(document.getElementById(trendBoxECharts))myChart.getZr().on(click, params => {console.log(params)let pointInPixel = [params.offsetX, params.offsetY]if (myChart.containPixel(grid, pointInPixel)) {//点…

【JAVA】云HIS系统功能菜单知识(一)

一、云HIS特色 云HIS滚动消息栏&#xff1a;质控消息、住院时长、药库结转、患者入院、医嘱停止、新开医嘱、门诊用药不良、出院审核、药品调拨、排班提醒、药品库存、药品过期、药品临期等帮助医生、护士和相关管理人员实时接收院内消息并作出处理。 二、云HIS功能菜单 【预约…

8、gateway使用和原理

一、什么是Spring Cloud Gateway 1、网关简介 网关作为流量的入口&#xff0c;常用的功能包括路由转发&#xff0c;权限校验&#xff0c;限流等。 2、Gateway简介 Spring Cloud Gateway 是Spring Cloud官方推出的第二代网关框架&#xff0c;定位于取代 Netflix Zuul。相比 …

省电液晶驱动IC,VK2C22G,COG片高抗干扰抗噪系列LCD段码驱动芯片,I2C通信接口

型号:VK2C22G DICE(邦定COB)/COG&#xff08;绑定玻璃用&#xff09; VK2C22G概述&#xff1a; VK2C22G是一个点阵式存储映射的LCD驱动器&#xff0c;可支持最大176点&#xff08;44SEGx4COM&#xff09;的LCD屏。单片机可通过I2C接口配置显示参数和读写显示数据&#…

计算机网络 day7 扫描IP脚本 - 路由器 - ping某网址的过程

目录 network 和 NetworkManager关系&#xff1a; 实验&#xff1a;编写一个扫描脚本&#xff0c;知道本局域网里哪些ip在使用&#xff0c;哪些没有使用&#xff1f; 使用的ip对应的mac地址都要显示出来 计算机程序执行的两种不同方式&#xff1a; shell语言编写扫描脚本 …

C# 通过枚举类型字符串,反射到枚举上

C# 通过枚举类型字符串&#xff0c;反射到枚举上 通过类型字符串&#xff0c;反射出任意类型枚举类型通过反射调用枚举GetTypeByName(EnumName) 为空&#xff1f; 小结 通过类型字符串&#xff0c;反射出任意类型 之前老顾写过一篇博客&#xff0c;通过反射&#xff0c;使用字…