LangChain大型语言模型(LLM)应用开发(五):评估

LangChain是一个基于大语言模型(如ChatGPT)用于构建端到端语言模型应用的 Python 框架。它提供了一套工具、组件和接口,可简化创建由大型语言模型 (LLM) 和聊天模型提供支持的应用程序的过程。LangChain 可以轻松管理与语言模型的交互,将多个组件链接在一起,以便在不同的应用程序中使用。

今天我们来学习DeepLearning.AI的在线课程:LangChain for LLM Application Development的第五门课:Evaluation(评估),所谓评估是指检验LLM回答的问题是否正确的方法,在上一篇博客Q&A over Documents中我们解释了如何通过langchain来实现对文档的问答功能,在文档的问答过程中LLM会就用户提出的关于文档内容的相关问题进行回答,那么今天我们需要研究的就是如何来检验LLM的回答是否正确?

要评估LLM回答问题的准确性大致需要下面几个步骤:

  1. 需要创建一组关于相关的问答测试集(包含了问题和标准答案)
  2. 让LLM回答测试集中的所有问题,并收集LLM给出的所有答案
  3. 将LLM的答案与问答测试集中的标准答案做比对,并给LLM的表现评分

下面我们就开始来讨论评估LLM表现吧!

创建基于文档问答的Q/A应用

首先我们还是要做一些基础性工作,比如设置openai的api key,导入一些langchain的基础库:

import pandas as pd
from langchain.chains import RetrievalQA
from langchain.chat_models import ChatOpenAI
from langchain.document_loaders import CSVLoader
from langchain.indexes import VectorstoreIndexCreator
from langchain.vectorstores import DocArrayInMemorySearch
import osfrom dotenv import load_dotenv, find_dotenv
_ = load_dotenv(find_dotenv()) # read local .env file

接下来我们需要导入一个csv文件,该文档主要包含2列,name和description,其中name表示商品的名称,description表示该商品的说明信息,我们需要对改文档的产品信息进行问答。

df=pd.read_csv("OutdoorClothingCatalog_1000.csv")df

 下面我们查看一下其中的某个商品信息:

print(df[:1].name.values[0])
print('------------------------')
print(df[:1].description.values[0])

 下面我们将该商品的信息翻译成中文,这样便于大家理解:

 接下来我们要创建一个用于回答文档内容的chain:RetrievalQA, 创建RetrievalQA需要包含以下几个步骤:

  1. 创建一个文档加载器CSVLoad实例
  2. 创建向量数据库索引index
  3. 创建llm
  4. 创建文档问答chain,RetrievalQA
#1.创建文档加载器
file = 'OutdoorClothingCatalog_1000.csv'
loader = CSVLoader(file_path=file)
data = loader.load()#2.创建向量数据库索引
index = VectorstoreIndexCreator(vectorstore_cls=DocArrayInMemorySearch
).from_loaders([loader])#3.创建llm
llm= ChatOpenAI(temperature = 0.0)#4.创建文档问答chain
qa = RetrievalQA.from_chain_type(llm=llm, chain_type="stuff", retriever=index.vectorstore.as_retriever(), verbose=True,chain_type_kwargs = {"document_separator": "<<<<>>>>>"}
)

上述代码的主要功能及作用在LangChain大型语言模型(LLM)应用开发(四):Q&A over Documents这篇博客中都已说明,这里不再赘述。

设置测试的数据

下面我们查看一下经过档加载器CSVLoad加载后生成的data内的信息,这里我们抽取data中的第九和第十条数据看看它们的主要内容:

手动创建测试集 

需要说明的是这里我们的文档是csv文件,所以我们使用的是文档加载器是CSVLoader,CSVLoader会对csv文件中的每一行数据进行分割,所以这里看到的data[10],data[11]的内容则是csv文件中的第10,第11条数据的内容。下面我们根据这两条数据手动设置两条“问答对”,每一个“问答对”中包含一个query,一个answer:

examples = [{"query": "Do the Cozy Comfort Pullover Set\have side pockets?","answer": "Yes"},{"query": "What collection is the Ultra-Lofty \850 Stretch Down Hooded Jacket from?","answer": "The DownTek collection"}
]

让LLM生成Q/A测试用例

在我以前写的两篇博客中(使用大型语言模(LLM)构建系统(七):评估1,与 使用大型语言模(LLM)构建系统(七):评估2)我们使用的方法都是通过手动的方法来构建测试数据集,比如说我们可以手动创建10个问题和10个答案,然后让LLM回答这10个问题,再将LLM给出的答案与我们准备好的答案做比较,最后再给LLM打分。评估的流程大概就是这样,但是这里有一个问题,就是我们需要手动去创建所有的问题集和答案集,那会是一个非常耗费人力和时间的成本。那有没有一种可以自动创建大量问题集和答案集的方法呢?那当然是有的,今天我们就来介绍Langchain提供的方法:QAGenerateChain,我们可以通过QAGenerateChain来为我们的文档自动创建问答集:

from langchain.evaluation.qa import QAGenerateChainexample_gen_chain = QAGenerateChain.from_llm(ChatOpenAI())new_examples = example_gen_chain.apply([{"doc": t} for t in data[:5]])
print(new_examples)

 这里我们对上述代码做个简单说明,我们创建了一个QAGenerateChain,然后我们应用了QAGenerateChain的apply方法对data中的前5条数据创建了5个“问答对”,由于创建问答集是由LLM来自动完成的,因此会涉及到token成本的问题,所以我们这里出于演示的目的,只对data中的前5条数据创建问答集。

那QAGenerateChain是如何自动创建问题集的,一个简单的apply方法似乎隐藏了很多的细节,如果你对这个隐藏的细节感兴趣,那我们可以尝试用debug的方式来打开这个潘多拉魔盒:

import langchain#打开debug
langchain.debug = Truenew_examples = example_gen_chain.apply([{"doc": t} for t in data[:5]])#关闭debug
langchain.debug = False

 从上面展现的细节中我们可以看到,原来在QAGenerateChain中有一个内置的prompt,在这个内置的prompt的前缀信息中,以"Human"的角色要求LLM对给与它的文档产生一个question和answer。这个prompt的前缀信息大概就长这个样子:

 QAGenerateChain会在data中的每一条数据中都运用这个prompt模板,因此data中的每一条数据都会产生一条“问答对”。有了问答集以后,我们还需要对问答集进行解析,从中过滤出真正有用的信息,不过我们首先需要创建一个解析函数parse_strings:

def parse_strings(strings_list):parsed_list = []for s in strings_list:s = s.replace('\n\n','\n')split_s = s.split('\n')# Ensure there are 2 parts in the split stringif len(split_s) != 2:continuequestion_part, answer_part = split_s# Ensure each part has the correct prefixif not question_part.startswith('QUESTION: ') or not answer_part.startswith('ANSWER: '):continue# Remove the prefixes and strip leading/trailing whitespacequestion = question_part.replace('QUESTION: ', '').strip()answer = answer_part.replace('ANSWER: ', '').strip()parsed_list.append({"query": question, "answer": answer})return parsed_list#对问答集进行解析
new_examples = parse_strings([t['text'] for t in new_examples])
print(new_examples)

 这里经过解析以后我们的new_examples 中只包含了5个query和5个answer,没有其他多余的信息,这正是我们想要的测试集。

组合测试集

还记得我们前面手动创建的两个问答集吗?现在我们需要将之前手动创建的问答集合并到QAGenerateChain创建的问答集中,这样在答集中既有手动创建的例子又有llm自动创建的例子,这会使我们的测试集更加完善:

examples += new_examplesexamples 

 这里我们看到examples 的前两条数据就是我们先前手动创建的,接下来我们就需要让之前创建的文档问答chain来回答这个测试集里的问题,来看看LLM是怎么回答的吧:

qa.run(examples[0]["query"])

 

 这里我们看到qa回答了第0个问题:“Yes, the Cozy Comfort Pullover Set does have side pockets.” ,这里的第0个问题就是先前我们手动创建的第一个问题,并且我们手动创建的answer是 :"Yes", 这里我们发现问答chain qa回答的也是“Yes”,只是它比我们的答案还多了一段说明:“the Cozy Comfort Pullover Set does have side pockets.”。

你想知道问答chain qa是怎么找到问题的答案的吗?魔鬼往往隐藏在细节中,下面让我们打开debug,看看问答chain qa是如何找到问题的答案!

langchain.debug = Trueqa.run(examples[0]["query"])langchain.debug = False

 这里我们稍微对问答chain qa寻找答案的过程进行一些说明,首先qa拿到问题,然后根据问题去向量数据库中搜索和问题相关的产品信息(会在全部产品中搜索),由于向量数据库中可能会存在多条产品信息和问题相关,因此这里会用“<<<<>>>>>”来分隔搜索到的多个产品信息,这里所谓的搜索是指向量间的相似度计算和比较,首先将问题转换成向量,再计算问题向量和数据库中每个向量的相似度,获取相似度最高的n条向量,然后再将这些相似的向量再转换成对应的文本即可。当这些步骤完成以后我们就看到了上述的结果,其中罗列了question和content,question是我们提出的问题,而“content”则是搜索到的多个相关产品信息,它们被用“<<<<>>>>>”分隔。这里需要加入一个我的个人判断:在搜索相关文档的时候应该是没有llm参与的,因此不会产生token成本的问题。在有了问题和相关产品信息后,接下来就需要LLM登场了,这里就会有一个prompt,在这个prompt中有一个System前缀信息,它告诉llm需要做什么,紧接着前缀信息的是多个产品信息,它们被用<<<<>>>>>进行分隔,最后是我们的问题,这里用Human来标识我们的问题。

 

 下面是输出部分,LLM会根据给它的prompt输出一个内容较多的json格式的结果,其中包含了问题的答案:

 

 最后经过过滤,得到了最终的答案:

前面我们让问答chain qa回答了测试集中的一个问题,下面我们要做的是让qa来回答测试集中的所有问题:

predictions = qa.apply(examples)

  

 基于LLM的自我评估

让我们来理一下思路,首先我们让LLM自动创建了问答测试集,接着我们又让LLM回答了测试集中所有的问题并得到了所有问题的回复信息。接下来我们要做的就是将这些问题的回复信息与测试集里的答案进行比对,更其妙的是这个比对过程也将是由LLM自己来完成,也就是说我们的LLM既当球员,又当裁判,最后再由“裁判”给出比对的结果,不过我需要指出的这里既当球员,又当裁判的LLM并非是同一个chain构成的,它们来自于不同的chain,也就是说这些chain的职能是不同的:

from langchain.evaluation.qa import QAEvalChain#创建LLM
llm = ChatOpenAI(temperature=0)#创建评估chain
eval_chain = QAEvalChain.from_llm(llm)#生成评估结果
graded_outputs = eval_chain.evaluate(examples, predictions)#统计评估结果
for i, eg in enumerate(examples):print(f"Example {i}:")print("Question: " + predictions[i]['query'])print("Real Answer: " + predictions[i]['answer'])print("Predicted Answer: " + predictions[i]['result'])print("Predicted Grade: " + graded_outputs[i]['text'])print()

 从上面的返回结果中我们看到,每一个问题中都包含了Question,Real Answer,Predicted Anser和Predicted Grade 四组内容,其中Real Answer是有先前的QAGenerateChain创建的问答测试集中的答案,而Predicted Answer则是由我们的问答chain qa回答的问题,最后的Predicted Grade则是由上面代码中的QAEvalChain回答的。

总结

今天我们学习了如何利用Langchain来评估LLM的表现,和以前评估openai模型的方法不同的是,这里我们使用的是全自动方式,即全自动方式生成测试集,然后全自动的给出问题的预测结果,最好全自动的评估预测结果的准确性,通过这种全自动的方式解放了我们的双手,使我们不需要因为没有测试数据集而苦恼,大大提高了生产率。

参考资料

QA Generation | 🦜️🔗 Langchain

Question Answering | 🦜️🔗 Langchain

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/5304.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ceph应用

资源池 Pool 管理 上面我们已经完成了 Ceph 集群的部署&#xff0c;但是我们如何向 Ceph 中存储数据呢&#xff1f;首先我们需要在 Ceph 中定义一个 Pool 资源池。Pool 是 Ceph 中存储 Object 对象抽象概念。我们可以将其理解为 Ceph 存储上划分的逻辑分区&#xff0c;Pool 由多…

Qt6 Qt Quick UI Prototype学习QML第一篇

Qt6 Qt Quick UI原型学习QML第一篇 开始创建项目Qt Quick UI原型简介.qmlproject文件举例Window平台小例子运行效果QML语法 了解语法 开始创建项目 创建一个具有QML入口点的Qt Quick 2 UI项目。要使用它&#xff0c;您需要设置一个QML运行时环境&#xff0c;例如gmlscene。 仅当…

消息队列——rabbitmq的不同工作模式

目录 Work queues 工作队列模式 Pub/Sub 订阅模式 Routing路由模式 Topics通配符模式 工作模式总结 Work queues 工作队列模式 C1和C2属于竞争关系&#xff0c;一个消息只有一个消费者可以取到。 代码部分只需要用两个消费者进程监听同一个队里即可。 两个消费者呈现竞争关…

安全防御 --- DDOS攻击(01)

DOS攻击&#xff08;deny of service&#xff09;--- 拒绝式服务攻击 例&#xff1a;2016年10月21日&#xff0c;美国提供动态DNS服务的DynDNS遭到DDOS攻击&#xff0c;攻击导致许多使用DynDNS服务的网站遭遇访问问题&#xff0c;此事件中&#xff0c;黑客人就是运用了DNS洪水…

golang waitgroup

案例 WaitGroup 可以解决一个 goroutine 等待多个 goroutine 同时结束的场景&#xff0c;这个比较常见的场景就是例如 后端 worker 启动了多个消费者干活&#xff0c;还有爬虫并发爬取数据&#xff0c;多线程下载等等。 我们这里模拟一个 worker 的例子 package mainimport (…

ChatGPT与Claude对比分析

一 简介 1、ChatGPT: 访问地址&#xff1a;https://chat.openai.com/ 由OpenAI研发,2022年11月发布。基于 transformer 结构的大规模语言模型,包含1750亿参数。训练数据集主要是网页文本,聚焦于流畅的对话交互。对话风格友好,回复通顺灵活,富有创造性。存在一定的安全性问题,可…

【深度学习】基于BRET的高级主题检测

一、说明 使用BERT,UMAP和HDBSCAN捕获文档主题,紧随最先进的BERTopic架构(transformer编码器)。 主题检测是一项 NLP 任务,旨在从文本文档语料库中提取全局“主题”。例如,如果正在查看书籍描述的数据集,主题检测将使我们能够将书籍分类,例如:“浪漫”、“科幻”、“旅…

Springboot+Flask+Neo4j+Vue2+Vuex+Uniapp+Mybatis+Echarts+Swagger综合项目学习笔记

文章目录 Neo4j教程&#xff1a;Neo4j高性能图数据库从入门到实战 医疗问答系统算法教程&#xff1a;医学知识图谱问答系统项目示例&#xff1a;neo4j知识图谱 Vueflask 中药中医方剂大数据可视化系统可视化技术&#xff1a;ECharts、D.jsflask教程&#xff1a;速成教程Flask w…

list模拟实现

一、结点的定义 有三个成员&#xff0c;2个指向前面和后面的指针&#xff0c;一个表示结点存储T类型的值。 对于_prev和_next&#xff0c;类型是 list_node<T>*&#xff0c;不是list_node*&#xff0c;加上类型参数T之后&#xff0c;才是模板类的类型。 构造函数中&am…

【MySQL】MySQL8.1.0版本正式发布带来哪些新特性?

文章目录 前言一、畅谈新版本二、8.1.0版本部署2.1、环境准备2.2、配置yum安装依赖2.3、用户及目录创建2.4、创建用户及组2.5、解压缩包2.6、环境变量配置2.7、创建参数文件2.8、数据库初始化2.9、启动Mysql2.10、登陆MySQL 8.1 三、新特性3.1、密码参数3.2、错误日志加强3.3、…

Spring Security OAuth2.0(6):自定义认证自定义登录页

文章目录 自定义登录界面配置自定义登录页面 自定义登录界面 \qquad 你可能想知道登录页面从哪里来&#xff1f;因为我们并没有提供任何的HTML或JSP文件。Spring Security 的默认配置没有明确设定一个登录页面的URL&#xff0c;因此Spring Security 会根据启用的功能自动生成一…

Godot实用代码-存取存档的程序设计

1. Settings.gd 全局变量 用于保存玩家设置 对应Settings.json 2. Data.gd 全局变量 用于保存玩具数据 对应Data.json 实践逻辑指南 1.在游戏开始的时候&#xff08;游戏场景入口的_ready()处&#xff0c; Settings.gd

Linux内核结构与特性简介

系统调用接口&#xff1a;位于最上层&#xff0c;实现了一些基本的功能&#xff0c;如read和write等系统调用。这是用户空间程序与内核交互的接口&#xff0c;提供了对内核功能的访问。 内核代码&#xff1a;位于系统调用接口之下&#xff0c;可以看作是独立于体系结构的通用内…

qt和vue交互

1、首先在vue项目中引入qwebchannel /******************************************************************************** Copyright (C) 2016 The Qt Company Ltd.** Copyright (C) 2016 Klarlvdalens Datakonsult AB, a KDAB Group company, infokdab.com, author Milian …

13_Linux无设备树Platform设备驱动

目录 Linux驱动的分离与分层 驱动的分隔与分离 驱动的分层 platform平台驱动模型简介 platform总线 platform驱动 platform设备 platform设备程序编写 platform驱动程序编写 测试APP编写 运行测试 Linux驱动的分离与分层 像I2C、SPI、LCD 等这些复杂外设的驱动就不…

Fortinet Accelerate 2023·中国区巡展收官丨让安全成就未来

7月18日&#xff0c;2023 Fortinet Accelerate Summit在上海成功举办&#xff01;这亦象征着“Fortinet Accelerate2023中国区巡展”圆满收官。Fortinet携手来自多个典型行业的百余位代表客户&#xff0c;以及Telstra - PBS 太平洋电信、Tenable等多家生态合作伙伴&#xff0c;…

利用数据分析告警机制,实现鸿鹄与飞书双向集成

需求描述 实现鸿鹄与飞书的双向集成&#xff0c;依赖鸿鹄的告警机制&#xff0c;可以发送用户关心的信息到飞书。同时依赖飞书强大的卡片消息功能&#xff0c;在飞书消息里面能够通过链接&#xff08;如下图&#xff09;返回到鸿鹄以方便用户进一步排查和分析问题。 解决方案 1…

CGT Asia嘉年华|2023第四届亚洲细胞与基因治疗 创新峰会(广州站)10月升级启航

近年来&#xff0c;全球CGT发展突飞猛进&#xff0c;为遗传罕见病、难治性慢性病和肿瘤患者带来了新的希望&#xff0c;也成为整个国际领域科技竞争的未来焦点。国家发改委发布的《“十四五”生物经济发展规划》明确指出要重点发展基因诊疗、干细胞治疗、免疫细胞治疗等新技术&…

利用鸿鹄优化共享储能的SCADA 系统功能,赋能用户数据自助分析

摘要 本文主要介绍了共享储能的 SCADA 系统大数据架构&#xff0c;以及如何利用鸿鹄来更好的优化 SCADA 系统功能&#xff0c;如何为用户进行数据自助分析赋能。 1、共享储能介绍 说到共享储能&#xff0c;可能不少朋友比较陌生&#xff0c;下面我们简单介绍一下共享储能的价值…

Python高光谱遥感数据处理与高光谱遥感机器学习方法深度应用

目录 ​第一章 高光谱基础 第二章 高光谱开发基础&#xff08;Python&#xff09; 第三章 高光谱机器学习技术&#xff08;python&#xff09; 第四章 典型案例操作实践 更多推荐 本教程提供一套基于Python编程工具的高光谱数据处理方法和应用案例。 涵盖高光谱遥感的基础…