计算机竞赛 基于卷积神经网络的乳腺癌分类 深度学习 医学图像

文章目录

  • 1 前言
  • 2 前言
  • 3 数据集
    • 3.1 良性样本
    • 3.2 病变样本
  • 4 开发环境
  • 5 代码实现
    • 5.1 实现流程
    • 5.2 部分代码实现
      • 5.2.1 导入库
      • 5.2.2 图像加载
      • 5.2.3 标记
      • 5.2.4 分组
      • 5.2.5 构建模型训练
  • 6 分析指标
    • 6.1 精度,召回率和F1度量
    • 6.2 混淆矩阵
  • 7 结果和结论
  • 8 最后

1 前言

🔥 优质竞赛项目系列,今天要分享的是

基于卷积神经网络的乳腺癌分类

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

2 前言

乳腺癌是全球第二常见的女性癌症。2012年,它占所有新癌症病例的12%,占所有女性癌症病例的25%。

当乳腺细胞生长失控时,乳腺癌就开始了。这些细胞通常形成一个肿瘤,通常可以在x光片上直接看到或感觉到有一个肿块。如果癌细胞能生长到周围组织或扩散到身体的其他地方,那么这个肿瘤就是恶性的。

以下是报告:

  • 大约八分之一的美国女性(约12%)将在其一生中患上浸润性乳腺癌。
  • 2019年,美国预计将有268,600例新的侵袭性乳腺癌病例,以及62,930例新的非侵袭性乳腺癌。
  • 大约85%的乳腺癌发生在没有乳腺癌家族史的女性身上。这些发生是由于基因突变,而不是遗传突变
  • 如果一名女性的一级亲属(母亲、姐妹、女儿)被诊断出患有乳腺癌,那么她患乳腺癌的风险几乎会增加一倍。在患乳腺癌的女性中,只有不到15%的人的家人被诊断出患有乳腺癌。

3 数据集

该数据集为学长实验室数据集。

搜先这是图像二分类问题。我把数据拆分如图所示

    dataset trainbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//  validationbenignb1.jpgb2.jpg//malignantm1.jpgm2.jpg//...

训练文件夹在每个类别中有1000个图像,而验证文件夹在每个类别中有250个图像。

3.1 良性样本

在这里插入图片描述
在这里插入图片描述

3.2 病变样本

在这里插入图片描述
在这里插入图片描述

4 开发环境

  • scikit-learn
  • keras
  • numpy
  • pandas
  • matplotlib
  • tensorflow

5 代码实现

5.1 实现流程

完整的图像分类流程可以形式化如下:

我们的输入是一个由N个图像组成的训练数据集,每个图像都有相应的标签。

然后,我们使用这个训练集来训练分类器,来学习每个类。

最后,我们通过让分类器预测一组从未见过的新图像的标签来评估分类器的质量。然后我们将这些图像的真实标签与分类器预测的标签进行比较。

5.2 部分代码实现

5.2.1 导入库

  import jsonimport mathimport osimport cv2from PIL import Imageimport numpy as npfrom keras import layersfrom keras.applications import DenseNet201from keras.callbacks import Callback, ModelCheckpoint, ReduceLROnPlateau, TensorBoardfrom keras.preprocessing.image import ImageDataGeneratorfrom keras.utils.np_utils import to_categoricalfrom keras.models import Sequentialfrom keras.optimizers import Adamimport matplotlib.pyplot as pltimport pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics import cohen_kappa_score, accuracy_scoreimport scipyfrom tqdm import tqdmimport tensorflow as tffrom keras import backend as Kimport gcfrom functools import partialfrom sklearn import metricsfrom collections import Counterimport jsonimport itertools

5.2.2 图像加载

接下来,我将图像加载到相应的文件夹中。

def Dataset_loader(DIR, RESIZE, sigmaX=10):IMG = []read = lambda imname: np.asarray(Image.open(imname).convert("RGB"))for IMAGE_NAME in tqdm(os.listdir(DIR)):PATH = os.path.join(DIR,IMAGE_NAME)_, ftype = os.path.splitext(PATH)if ftype == ".png":img = read(PATH)img = cv2.resize(img, (RESIZE,RESIZE))IMG.append(np.array(img))return IMGbenign_train = np.array(Dataset_loader('data/train/benign',224))malign_train = np.array(Dataset_loader('data/train/malignant',224))benign_test = np.array(Dataset_loader('data/validation/benign',224))malign_test = np.array(Dataset_loader('data/validation/malignant',224))

5.2.3 标记

之后,我创建了一个全0的numpy数组,用于标记良性图像,以及全1的numpy数组,用于标记恶性图像。我还重新整理了数据集,并将标签转换为分类格式。

benign_train_label = np.zeros(len(benign_train))malign_train_label = np.ones(len(malign_train))benign_test_label = np.zeros(len(benign_test))malign_test_label = np.ones(len(malign_test))X_train = np.concatenate((benign_train, malign_train), axis = 0)Y_train = np.concatenate((benign_train_label, malign_train_label), axis = 0)X_test = np.concatenate((benign_test, malign_test), axis = 0)Y_test = np.concatenate((benign_test_label, malign_test_label), axis = 0)s = np.arange(X_train.shape[0])np.random.shuffle(s)X_train = X_train[s]Y_train = Y_train[s]s = np.arange(X_test.shape[0])np.random.shuffle(s)X_test = X_test[s]Y_test = Y_test[s]Y_train = to_categorical(Y_train, num_classes= 2)Y_test = to_categorical(Y_test, num_classes= 2)

5.2.4 分组

然后我将数据集分成两组,分别具有80%和20%图像的训练集和测试集。让我们看一些样本良性和恶性图像

x_train, x_val, y_train, y_val = train_test_split(X_train, Y_train, test_size=0.2, random_state=11)w=60h=40fig=plt.figure(figsize=(15, 15))columns = 4rows = 3for i in range(1, columns*rows +1):ax = fig.add_subplot(rows, columns, i)if np.argmax(Y_train[i]) == 0:ax.title.set_text('Benign')else:ax.title.set_text('Malignant')plt.imshow(x_train[i], interpolation='nearest')plt.show()

在这里插入图片描述

5.2.5 构建模型训练

我使用的batch值为16。batch是深度学习中最重要的超参数之一。我更喜欢使用更大的batch来训练我的模型,因为它允许从gpu的并行性中提高计算速度。但是,众所周知,batch太大会导致泛化效果不好。在一个极端下,使用一个等于整个数据集的batch将保证收敛到目标函数的全局最优。但是这是以收敛到最优值较慢为代价的。另一方面,使用更小的batch已被证明能够更快的收敛到好的结果。这可以直观地解释为,较小的batch允许模型在必须查看所有数据之前就开始学习。使用较小的batch的缺点是不能保证模型收敛到全局最优。因此,通常建议从小batch开始,通过训练慢慢增加batch大小来加快收敛速度。

我还做了一些数据扩充。数据扩充的实践是增加训练集规模的一种有效方式。训练实例的扩充使网络在训练过程中可以看到更加多样化,仍然具有代表性的数据点。

然后,我创建了一个数据生成器,自动从文件夹中获取数据。Keras为此提供了方便的python生成器函数。

BATCH_SIZE = 16train_generator = ImageDataGenerator(zoom_range=2,  # 设置范围为随机缩放rotation_range = 90,horizontal_flip=True,  # 随机翻转图片vertical_flip=True,  # 随机翻转图片)

下一步是构建模型。这可以通过以下3个步骤来描述:

  • 我使用DenseNet201作为训练前的权重,它已经在Imagenet比赛中训练过了。设置学习率为0.0001。

  • 在此基础上,我使用了globalaveragepooling层和50%的dropout来减少过拟合。

  • 我使用batch标准化和一个以softmax为激活函数的含有2个神经元的全连接层,用于2个输出类的良恶性。

  • 我使用Adam作为优化器,使用二元交叉熵作为损失函数。

    def build_model(backbone, lr=1e-4):model = Sequential()model.add(backbone)model.add(layers.GlobalAveragePooling2D())model.add(layers.Dropout(0.5))model.add(layers.BatchNormalization())model.add(layers.Dense(2, activation='softmax'))model.compile(loss='binary_crossentropy',optimizer=Adam(lr=lr),metrics=['accuracy'])return modelresnet = DenseNet201(weights='imagenet',include_top=False,input_shape=(224,224,3)
    )model = build_model(resnet ,lr = 1e-4)
    model.summary()
    

让我们看看每个层中的输出形状和参数。

在这里插入图片描述
在训练模型之前,定义一个或多个回调函数很有用。非常方便的是:ModelCheckpoint和ReduceLROnPlateau。

  • ModelCheckpoint:当训练通常需要多次迭代并且需要大量的时间来达到一个好的结果时,在这种情况下,ModelCheckpoint保存训练过程中的最佳模型。

  • ReduceLROnPlateau:当度量停止改进时,降低学习率。一旦学习停滞不前,模型通常会从将学习率降低2-10倍。这个回调函数会进行监视,如果在’patience’(耐心)次数下,模型没有任何优化的话,学习率就会降低。

在这里插入图片描述

该模型我训练了60个epoch。

learn_control = ReduceLROnPlateau(monitor='val_acc', patience=5,verbose=1,factor=0.2, min_lr=1e-7)filepath="weights.best.hdf5"checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=1, save_best_only=True, mode='max')history = model.fit_generator(train_generator.flow(x_train, y_train, batch_size=BATCH_SIZE),steps_per_epoch=x_train.shape[0] / BATCH_SIZE,epochs=20,validation_data=(x_val, y_val),callbacks=[learn_control, checkpoint])

6 分析指标

评价模型性能最常用的指标是精度。然而,当您的数据集中只有2%属于一个类(恶性),98%属于其他类(良性)时,错误分类的分数就没有意义了。你可以有98%的准确率,但仍然没有发现恶性病例,即预测的时候全部打上良性的标签,这是一个不好的分类器。

history_df = pd.DataFrame(history.history)history_df[['loss', 'val_loss']].plot()history_df = pd.DataFrame(history.history)history_df[['acc', 'val_acc']].plot()

在这里插入图片描述

6.1 精度,召回率和F1度量

为了更好地理解错误分类,我们经常使用以下度量来更好地理解真正例(TP)、真负例(TN)、假正例(FP)和假负例(FN)。

精度反映了被分类器判定的正例中真正的正例样本的比重。

召回率反映了所有真正为正例的样本中被分类器判定出来为正例的比例。

F1度量是准确率和召回率的调和平均值。

在这里插入图片描述

6.2 混淆矩阵

混淆矩阵是分析误分类的一个重要指标。矩阵的每一行表示预测类中的实例,而每一列表示实际类中的实例。对角线表示已正确分类的类。这很有帮助,因为我们不仅知道哪些类被错误分类,还知道它们为什么被错误分类。

from sklearn.metrics import classification_reportclassification_report( np.argmax(Y_test, axis=1), np.argmax(Y_pred_tta, axis=1))from sklearn.metrics import confusion_matrixdef plot_confusion_matrix(cm, classes,normalize=False,title='Confusion matrix',cmap=plt.cm.Blues):if normalize:cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis]print("Normalized confusion matrix")else:print('Confusion matrix, without normalization')print(cm)plt.imshow(cm, interpolation='nearest', cmap=cmap)plt.title(title)plt.colorbar()tick_marks = np.arange(len(classes))plt.xticks(tick_marks, classes, rotation=55)plt.yticks(tick_marks, classes)fmt = '.2f' if normalize else 'd'thresh = cm.max() / 2.for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])):plt.text(j, i, format(cm[i, j], fmt),horizontalalignment="center",color="white" if cm[i, j] > thresh else "black")plt.ylabel('True label')plt.xlabel('Predicted label')plt.tight_layout()cm = confusion_matrix(np.argmax(Y_test, axis=1), np.argmax(Y_pred, axis=1))cm_plot_label =['benign', 'malignant']plot_confusion_matrix(cm, cm_plot_label, title ='Confusion Metrix for Skin Cancer')

在这里插入图片描述

7 结果和结论

在这里插入图片描述
在这个博客中,学长我演示了如何使用卷积神经网络和迁移学习从一组显微图像中对良性和恶性乳腺癌进行分类,希望对大家有所帮助。

8 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52938.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ssm+vue农家乐信息平台源码和论文

ssmvue农家乐信息平台源码和论文066 开发工具:idea 数据库mysql5.7 数据库链接工具:navcat,小海豚等 技术:ssm 1、研究现状 国外,农家乐都被作为潜在的发展农村经济,增加农民收入的重要手段,让农户广…

【Qt专栏】实现单例程序,禁止程序多开的几种方式

目录 一,简要介绍 二,实现示例(Windows) 1.使用系统级别的互斥机制 2.通过共享内存(进程间通信-IPC) 3.使用命名互斥锁(不推荐) 4.使用文件锁 5.通过网络端口检测 一&#xf…

LLM提示词工程和提示词工程师Prompting and prompt engineering

你输入模型的文本被称为提示,生成文本的行为被称为推断,输出文本被称为完成。用于提示的文本或可用的内存的全部量被称为上下文窗口。尽管这里的示例显示模型表现良好,但你经常会遇到模型在第一次尝试时无法产生你想要的结果的情况。你可能需…

文件服务器实现方式汇总

hello,伙伴们,大家好,今天这一期shigen来给大家推荐几款可以一键实现文件浏览器的工具,让你轻松的实现文件服务器和内网的文件传输、预览。 基于node 本次推荐的是http-server, 它的githuab地址是:http-s…

Spring 与【MyBatis 】和【 pageHelper分页插件 】整合

目录 一、Spring整合MyBatis 1. 导入pom依赖 2. 利用mybatis逆向工程生成模型层层代码 3. 编写配置文件 4. 注解式开发 5. 编写Junit测试类 二、AOP整合pageHelper分页插件 1. 创建一个AOP切面 2. Around("execution(* *..*xxx.*xxx(..))") 表达式解析 3. 编…

Netty核心源码解析(三)--NioEventLoop

NioEventLoop介绍 NioEventLoop继承SingleThreadEventLoop,核心是一个单例线程池,可以理解为单线程,这也是Netty解决线程并发问题的最根本思路--同一个channel连接上的IO事件只由一个线程来处理,NioEventLoop中的单例线程池轮询事件队列,有新的IO事件或者用户提交的task时便执…

2023谷歌开发者大会直播大纲「初稿」

听人劝、吃饱饭,奉劝各位小伙伴,不要订阅该文所属专栏。 作者:不渴望力量的哈士奇(哈哥),十余年工作经验, 跨域学习者,从事过全栈研发、产品经理等工作,现任研发部门 CTO 。荣誉:2022年度博客之星Top4、博客专家认证、全栈领域优质创作者、新星计划导师,“星荐官共赢计…

【java】【idea2023版】Springboot模块没有.iml文件的问题

目录 方法一: 1、首先鼠标选中对应的对应的模块 ,按两下Ctrl键 2、project中选择对应的模块 3、运行mvn idea:module 命令​编辑 方法二: 1、可以右键点击open Terminal 2、然后在打开的Terminal里输入 方法一: 1、首先鼠…

【Rust】Rust学习 第十八章模式用来匹配值的结构

模式是 Rust 中特殊的语法,它用来匹配类型中的结构,无论类型是简单还是复杂。结合使用模式和 match 表达式以及其他结构可以提供更多对程序控制流的支配权。模式由如下一些内容组合而成: 字面值解构的数组、枚举、结构体或者元组变量通配符占…

python VTK PyQt5 VTK环境搭建 创建 渲染窗口及三维模型,包含 三维模型交互;

目录 Part1. VTK 介绍 Part2. PyQt5 VTK环境搭建 安装Anaconda 自带Python Anaconda下载 安装PyQt5 安装 VTK Part3 :PyQt VTK 结合样例: Part1. VTK 介绍 VTK(visualization toolkit)是一个开源的免费软件系统,主要用于三维计算机图形…

数字孪生赋能工业制造,为制造业带来新机遇与挑战

数字孪生技术是利用模拟仿真技术将实体对象数字化的技术。它基于虚拟现实、人工智能和云计算等技术,能够创建与真实物体相同的数字模型,并通过实时监测和分析手段,为制造企业提供关于该物体的全面数据,从而优化产品开发和生产过程…

数据结构双向链表

Hello,好久不见,今天我们讲链表的双向链表,这是一个很厉害的链表,带头双向且循环,学了这个链表,你会发现顺序表的头插头删不再是一个麻烦问题,单链表的尾插尾删也变得简单起来了,那废…

jvm——内存模型

1.java内存模型 1.1 原子性 1.2 问题分析 这里与局部变量自增不同,局部变量调用iinc是在局部变量表槽位上进行自增。 静态变量是在操作数栈自增。 这里的主内存和工作内存时再JMM里的说法。 因为操作系统是时间片切换的多个线程轮流使用CPU. 1.3解决方法 JMM中…

C#矩阵XY排序

矩阵XY快速排序 using MyVision.Script.Method;public class MyScript : ScriptMethods {//struct MOTIONPOSXY_S{public double Pos_x;public double Pos_y;};//脚本执行该方法public bool Process(){//try{//脚本代码写在下方 List<double> PointX GetDoubleList(&qu…

Tensor-动手学深度学习-李沐_笔记

介绍 Tensor&#xff0c;又称"张量"&#xff0c;其实就是n维度数组。不同维度的Tensor示意图如下&#xff1a; 关于Tensor.reshape reshape函数可以处理总元素个数相同的任何新形状&#xff0c;【3&#xff0c;2&#xff0c;5】->【3&#xff0c;10】->【5&a…

[系统] 电脑突然变卡 / 电脑突然** / 各种突发情况解决思路

今天来公司办公&#xff0c;开机之后发现电脑出现各种问题&#xff0c;死机、卡顿、点什么都加载&#xff0c;甚至开一个文件夹要1分钟才能打开&#xff0c;花了2个小时才解决&#xff0c;走了很多弯路&#xff0c;其实早点想通&#xff0c;5分钟就能解决问题&#xff0c;所以打…

本地部署 Stable Diffusion(Mac 系统)

在 Mac 系统本地部署 Stable Diffusion 与在 Windows 系统下本地部署的方法本质上是差不多的。 一、安装 Homebrew Homebrew 是一个流行的 macOS &#xff08;或 Linux&#xff09;软件包管理器&#xff0c;用于自动下载、编译和安装各种命令行工具和应用程序。有关说明请访问官…

ICT产教融合创新实训基地物联网实训室建设方案

一、概述 1.1物联网定义 物联网工程&#xff08;Internet of Things Engineering&#xff09;是一种以信息技术&#xff08;IT&#xff09;来改善实体世界中人们生活方式的新兴学科&#xff0c;它利用互联网技术为我们的日常生活活动提供服务和增益&#xff0c;从而让各种智能…

什么是Sui Kiosk,它可以做什么,如何赋能创作者?

创作者和IP持有者需要一些工具帮助他们在区块链上实现其商业模式。Sui Kiosk作为Sui上的一种原语可以满足这种需求&#xff0c;为创作者提供动态选项&#xff0c;使他们能够在任何交易场景中设置完成交易的条件。 本文将向您介绍为什么要在SuiFrens中使用Sui Kiosk&#xff0c…

0基础学习VR全景平台篇 第90篇:智慧眼-数据统计

【数据统计】是按不同条件去统计整个智慧眼项目中的热点&#xff0c;共包含四大块&#xff0c;分别是数据统计、分类热点、待审核、回收站&#xff0c;下面我们来逐一进行介绍。 1、数据统计 ① 可以按所属分类、场景分组、所属场景、热点类型以及输入热点名去筛选对应的热点&…