【Hello Algorithm】堆和堆排序

本篇博客简介: 讲解堆和堆排序相关算法

堆和堆排序

    • 堆的概念
    • 堆的性质
    • 堆的表示形式
    • 堆的增加
    • 删除堆的最大值
  • 堆排序
    • 堆排序思路
    • 时间复杂度为N的建堆方法
    • 已知一个近乎有序的数组 使用最佳排序方法排序

堆的概念

这里注意!!! 这里说的堆和操作系统里面的堆没有半点关系!!!

如果有一个关键码的集合K = {k0,k1, k2,…,kn-1},把它的所有元素按完全二叉树的顺序存储方式存储在一个一维数组中,并满足:Ki <= K2i+1 且 Ki<= K2i+2 (Ki >= K2i+1 且 Ki >= K2i+2) i = 0,1,2…,则称为 小堆(或大堆)。将根节点最大的堆叫做最大堆或大根堆,根节点最小的堆叫做最小堆或小根堆。

上面这个就是官方的解释了

但是要是我们用通俗的话来说

就是这样子的

大堆 就是所有的父节点都大于等于子节点的堆

小堆 就是所有的子节点都小于等于父节点的堆

如图

在这里插入图片描述

堆的性质

  1. 堆总是一棵完全的二叉树

  2. 堆中某个节点的值总是不大于或者不小于其父节点的值

什么是完全二叉树呢

它要么是一颗满二叉树 要么它正在变满的路上

堆的表示形式

我们一般使用一个数组来从存储结构上表示一个堆 而堆在逻辑结构上表示一颗二叉树

具体的示例如下

假设我们现在有如下的一个数组

在这里插入图片描述

现在要将其转化为一颗完全二叉树

我们在上文说过一句话 堆要么是一颗满二叉树 要么在变成满二叉树的路上

所以说 我们只要按照满二叉树的形式构造一颗二叉树 到最后构造出来的一定是一颗完全二叉树

而满二叉树每一层的节点格式是确定的 所以说我们从第一层开始 依次拿一个数字 两个 数字 四个数字… 构造即可

在这里插入图片描述

从上面的构造中 我们能发现这样子的一个规律

我们现在假设 i 为数组的下标 那么根据完全二叉树的特征 我们可以得出以下结论

如果i对应的节点左孩子 右孩子 父亲节点存在的话

  • i 对应节点的左孩子节点下标一定是 2*i+1
  • i 对应节点的右孩子节点下标一定是 2*i+2
  • i 对应节点的父节点下标一定是 (i-1)/2

堆的增加

我们假设现在有一个空数组 我们要用这个数组构建出一个大堆

现在依次插入数字 10 8 6 那么形成的逻辑结构如下

在这里插入图片描述

目前二叉树是一个完全二叉树 并且符合大堆的性质

可是如果我们下一个数字插入 12 那么我们就破坏了这个大堆了

插入数字 12 之后就会出现子节点大于父节点的情况 这明显和我们上面讲的大堆的性质不符

在这里插入图片描述

此时为了让我们的大堆继续生效 我们就需要将出问题的节点向上调整

而又根据我们上面将的性质 一个节点通过公式 (i-1)/2 就能够找到它的父节点

之后就是与父节点比大小 如果子节点大就交换它们的位置

在这里插入图片描述

可是我们交换一次之后并不能保证这就是个大堆了 所以说向上调整要一直调整到根节点或者说比较不过父节点为止

在这里插入图片描述

删除堆的最大值

在这里插入图片描述
我们想要删除堆中的一个数据 还要不改变这个堆的结构 这个时候怎么办呢

我们这里给出一种很巧妙的解法

我们先将最前面的元素和最后面的元素交换位置

然后再删除掉堆最后面的元素

之后开始向下调整这个堆

如上图所示

如果说一个堆有 14 个元素 其中下标为7的为止的值被修改成了一个未知的值 我们应该如何修改使得该堆正常

其实思路很简单 它的值变化只有三种可能 变大 变小 不变

不变的情况我们不考虑 如果变大或者变小 其他位置的值是不发生改变的

我们只需要对于该位置执行两个操作

  • 向上调整
  • 向下调整

如果向上调整调用成功 则说明上面的树已经恢复正常了 而下面的树根本就没变 所以说这个堆整体就正常了 我们也不不需要向下调整了

如果我们向上调整之后 这个堆没有变化 那一定说明上面没问题 下面出问题了 此时调用向下调整即可

堆排序

我们C++中是实现了堆这种数据结构的 具体内容可以参考我的这篇博客

此外这篇博客中还详细讲解了 向上调整和向下调整的算法 优先级队列

堆排序的时间复杂度

进行堆插入的过程要调用向上调整函数

我们假设 堆中有N的元素 那么这个堆的逻辑二叉树结构就有LogN层高

所以说我们最多最多要比较LogN次 因为每一次插入的时间复杂度都是LogN

如果我们插入N个数 那么时间复杂度就是 N*LogN了

堆排序思路

如果说现在给我们一个无序的数组 要让我们对于这个数组从小到大排序

那么我们可以构建一个小堆作为中间的数据结构

方法如下

  • 首先将数组中的数组遍历一遍 并且放入到优先级队列中
  • 优先级队列的根节点一定是最小值 所以我们每次拿数据一定保证是比后面值要小的
  • 我们从0下标开始填数据 每次下标加1并且填写根节点的值 直到堆中没有数据为止

时间复杂度为N的建堆方法

我们如果每次都是在最后插入数据 不停向上调整的话 建堆的时间复杂度是趋近于N*LogN的

但是在一定条件下 我们的建堆时间复杂度可以达到 N 需要达到的条件如下

  • 我们要知道数组的大小
  • 我们要知道所有需要插入的数字

建堆思路如下

  • 我们从最后一层最后一个结点开始建堆 使用向下调整的算法
  • 调整完最后一层之后我们继续从上一层的最后一个节点开始 插入数据 使用向下调整的算法
  • 重复上面的步骤

下面是我的笔记分析

在这里插入图片描述

已知一个近乎有序的数组 使用最佳排序方法排序

我们现在已知一个几乎有序的数组 请选择一个合适的排序方法将其排序 并说明时间复杂度是多少

  • 几乎有序的指的是 如果把数组排好序的话 每个元素移动的距离一定不超过K

解决这个问题我们的思路还是使用堆排序

我们假设K值为5

那么我们现在建立一个小堆 堆的大小为6 那么我们可以肯定的说 这个小堆的根节点就是这个数组的最小值

因为这六个数中肯定会有数组的最小值 而我们排序获取了这六个数的最小值 那么该值就一定是数组的最小值了

之后我们数组中的第二小值肯定在第2~7个数字中 我们只需要将数组的后一个元素插入小堆中即可找到

之后按照上面的方法 排一个插一个 排一个插一个

我们一共排了N个数字 每个数字最坏的情况要交换LogK次

所以说 最坏的时间复杂度为 NLogK 当K足够小的时候 时间复杂度可以近似看作NLogK

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52712.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ELK + Kibana + Logstash实现可视化日志

&#x1f61c;作 者&#xff1a;是江迪呀✒️本文关键词&#xff1a;elasticsearch、kibana、logstash、日志收集、日志可视化☀️每日 一言&#xff1a;坚持就是胜利啊&#xff0c;哥~ 一、前言 面试官&#xff1a;在日常开发工作中你们是如何查看日志的呢&#x…

【在Windows下搭建Tomcat HTTP服务】

文章目录 前言1.本地Tomcat网页搭建1.1 Tomcat安装1.2 配置环境变量1.3 环境配置1.4 Tomcat运行测试1.5 Cpolar安装和注册 2.本地网页发布2.1.Cpolar云端设置2.2 Cpolar本地设置 3.公网访问测试4.结语 前言 Tomcat作为一个轻量级的服务器&#xff0c;不仅名字很有趣&#xff0…

【Android】Mobile-Security-Framework-MobSF Manifest 静态扫描规则

前言 移动安全框架&#xff08;MobSF&#xff09;是一个自动化的一体化移动应用程序&#xff08;Android/iOS/Windows&#xff09;测试、恶意软件分析和安全评估框架&#xff0c;能够执行静态和动态分析。MobSF支持移动应用程序二进制文件&#xff08;APK、XAPK、IPA和APPX&am…

线性代数的学习和整理9(草稿-----未完成)

矩阵的乘法的映射图(不属于本文) 矩阵的乘法具有不可交换性 A*B ! B*A A左乘*B ! A右乘*B 假设A!0, B!0, 但是可能存在 A*B0 假设A!0, 但是可能存在 A*A0 如果已知 A*BC&#xff0c;那么 B A-*C ,但是B ! C*A- 线性代数&#xff0c;矩阵&#xff0c;属于代数学&#xff0c;不属…

Stable Diffusion web UI 部署详细教程

前言 本文使用 AutoDL 平台进行 Stable Diffusion web UI 云端部署 AutoDL 官网&#xff1a;AutoDL算力云 | 弹性、好用、省钱。租GPU就上AutoDL Stable Diffusion web UI 官网&#xff1a;AUTOMATIC1111/stable-diffusion-webui: Stable Diffusion web UI (github.com) 步…

Android项目如何上传Gitee仓库

前言 最近Android项目比较多&#xff0c;我都是把Android项目上传到Gitee中去&#xff0c;GitHub的话我用的少&#xff0c;可能我还是更喜欢Gitee吧&#xff0c;毕竟Gitee仓库用起来更加方便 一. 创建Gitee仓库 1. 先创建一个Gitee账号&#xff0c;然后登录上去 2. 创建Androi…

leetcode 1035. 不相交的线

2023.8.25 本题可以转化为&#xff1a;求两数组的最长公共子序列。 进而可以用dp算法解决。 方法类似于这题最长公共子序列 。 代码如下&#xff1a; class Solution { public:int maxUncrossedLines(vector<int>& nums1, vector<int>& nums2) {vector<…

腾讯云 CODING 荣获 TiD 质量竞争力大会 2023 软件研发优秀案例

点击链接了解详情 8 月 13-16 日&#xff0c;由中关村智联软件服务业质量创新联盟主办的第十届 TiD 2023 质量竞争力大会在北京国家会议中心召开。本次大会以“聚焦数字化转型 探索智能软件研发”为主题&#xff0c;聚焦智能化测试工程、数据要素、元宇宙、数字化转型、产融合作…

Vue2+Vue3笔记(尚硅谷张天禹老师)day01

只是记录&#xff0c;初心是为了让页面更好看,会有错误 环境准备 下载vue:Vue下载 下面两个是可选的,主要是我想让控制台干净点 vue_dev_tool安装 vue_dev_tool安装 : Vue 控制台出现You are running Vue in development mode. Make sure to turn on production mode when dep…

基于单片机串口控制直流电机调速

一、系统方案 (2)本设计采用STC89C5单片机作为主控器&#xff0c;串口控制直流电机调速&#xff0c;串口助手发送1-8&#xff0c;改变电机速度&#xff0c;数码管显示对应速度。 二、硬件设计 原理图如下&#xff1a; 三、单片机软件设计 1、首先是系统初始化 TMOD0x21;//定…

【数据结构练习】单链表OJ题(二)

目录 一、相交链表二、环形链表1三、环形链表2四、链表分割五、复制带随机指针的链表 一、相交链表 题目&#xff1a; 示例&#xff1a; 注意&#xff1a;不能根据节点的值来比较是否相交&#xff0c;而是根据节点在内存中是否指向相同的位置。 例如以上图&#xff1a; 链表…

SHEIN、OnBuy、FNAC等跨境平台如何搭建自养号环境进行高效测评补单。

SHEIN是一家全球领先的时尚和生活方式在线零售商&#xff0c;通过按需生产的模式赋能供应商共同打造敏捷柔性供应链&#xff0c;从而减少浪费&#xff0c;并向全球消费者提供丰富且具有性价比的时尚产品。目前SHEIN直接服务全球超过150个国家和地区的消费者&#xff0c;并致力于…

n-皇后问题(DFS)

n−皇后问题是指将 n 个皇后放在 nn 的国际象棋棋盘上&#xff0c;使得皇后不能相互攻击到&#xff0c;即任意两个皇后都不能处于同一行、同一列或同一斜线上。 现在给定整数 n&#xff0c;请你输出所有的满足条件的棋子摆法。 输入格式 共一行&#xff0c;包含整数 n。 输出…

【C++11】future和async等

C11的future和async等关键字 1.async和future的概念 std::async 和 std::future 是 C11 引入的标准库功能&#xff0c;用于实现异步编程&#xff0c;使得在多线程环境中更容易处理并行任务。它们可以帮助你在不同线程中执行函数&#xff0c;并且能够方便地获取函数的结果。 在…

20230822 Windows上使用find_package引入OpenCV报错

报错信息 打开Cmake项目时&#xff0c;find_package 报错&#xff1a; Found OpenCV Windows Pack but it has no binaries compatible with yourconfiguration.You should manually point CMake variable OpenCV_DIR to your build of OpenCVlibrary.原因 大概率原项目是在 …

三次握手四次挥手之全连接半连接队列

什么是全连接半连接 在 TCP 三次握手的时候&#xff0c;Linux 内核会维护两个队列&#xff0c;分别是&#xff1a; 半连接队列&#xff0c;也称 Listen 队列&#xff1b;全连接队列&#xff0c;也称 accept 队列&#xff1b; 工作原理 每一个socket执行listen时&#xff0c…

arm:day6

实现UART通信&#xff1a; 1.键盘输入一个字符a,串口工具显示b 2.键盘输入一个字符串"nihao",串口工具显示"nihao" uart.h #ifndef __UART4_H__ #define __UART4_H__#include "stm32mp1xx_uart.h" #include "stm32mp1xx_gpio.h" #in…

vr游乐场项目投资方案VR主题游乐馆互动体验

VR文旅景区沉浸互动体验项目是指利用虚拟现实技术在文旅景区中创建沉浸式的互动体验项目。通过虚拟现实技术&#xff0c;游客可以身临其境地体验景区的风景和文化&#xff0c;与虚拟场景中的元素进行互动。 普乐蛙VR设备 普乐蛙VR设备案例分享 这种项目可以为游客带来全新的旅游…

【C++】iota函数 + sort函数实现基于一个数组的多数组对应下标绑定排序

目录 一、iota函数 1. 函数解析 ​① 迭代器类型(补充) ② 头文件 ③ 参数 2. 函数用途与实例 二、sort函数 1、 函数解读 2、实现倒序排列 2.1 greater 与 less 模板参数 2.2 lambda表达式 三、下标绑定排序&#xff08;zip&#xff09; --- 833.字符串中的查找与替换 一、…

ubuntu18.04复现yolo v8环境配置之CUDA与pytorch版本问题以及多CUDA版本安装及切换

最近在复现yolo v8的程序&#xff0c;特记录一下过程 环境&#xff1a;ubuntu18.04ros melodic 小知识&#xff1a;GPU并行计算能力高于CPU—B站UP主说的 Ubuntu可以安装多个版本的CUDA。如果某个程序的Pyorch需要不同版本的CUDA&#xff0c;不必删除之前的CUDA&#xff0c;…