matlab使用教程(19)—曲线拟合与一元方程求根

1.多项式曲线拟合

        此示例说明如何使用 polyfit 函数将多项式曲线与一组数据点拟合。您可以按照以下语法,使用 polyfit 求出以最小二乘方式与一组数据拟合的多项式的系数
p = polyfit(x,y,n),
        其中:
        • x y 是包含数据点的 x y 坐标的向量
        • n 是要拟合的多项式的次数
        创建包含五个数据点的 x-y 测试数据。
x = [1 2 3 4 5];
y = [5.5 43.1 128 290.7 498.4];
        使用 polyfit 求与数据近似拟合的三次多项式。
p = polyfit(x,y,3)
p = 1×4
-0.1917 31.5821 -60.3262 35.3400
        使用 polyfit 获取拟合线的多项式后,可以使用 polyval 计算可能未包含在原始数据中的其他点处的多项式。在更小域内计算 polyfit 估计值,并绘制实际数据值的估计值以进行对比。可以为拟合线包含方程注释。
x2 = 1:.1:5;
y2 = polyval(p,x2);
plot(x,y, 'o' ,x2,y2)
grid on
s = sprintf( 'y = (%.1f) x^3 + (%.1f) x^2 + (%.1f) x + (%.1f)' ,p(1),p(2),p(3),p(4));
text(2,400,s)

1.1 预测美国人口

        此示例说明,即使使用次数最适中的多项式外插数据也是有风险且不可靠的。此示例比 MATLAB® 出现得更早。该示例最初作为一个练习出现在 Forsythe、Malcolm 和 Moler 合著的《Computer Methods for Mathematical Computations》一书中,该书由出版商 Prentice-Hall 在1977 年出版。
        现在,通过 MATLAB 可以更容易地改变参数和查看结果,但基础数学原理未变。使用 1910 年至 2000 年的美国人口普查数据创建并绘制两个向量。
% Time interval
t = (1910:10:2000)';
% Population
p = [91.972 105.711 123.203 131.669 150.697 ...
179.323 203.212 226.505 249.633 281.422]';
% Plot
plot(t,p, 'bo' );
axis([1910 2020 0 400]);
title( 'Population of the U.S. 1910-2000' );
ylabel( 'Millions' );

         那么猜想一下 2010 年美国的人口是多少?

p
p = 10×1
91.9720
105.7110
123.2030
131.6690
150.6970
179.3230
203.2120
226.5050
249.6330
281.4220
        将这些数据与 t 中的一个多项式拟合,并使用它将人口数外插到 t = 2010。通过对包含范德蒙矩阵的线性系统求解来获得多项式中的系数,该矩阵为 11×11,其元素为缩放时间的幂,即 A(i,j) = s(i)^(n-j)
n = length(t);
s = (t-1950)/50;
A = zeros(n);
A(:,end) = 1;
for j = n-1:-1:1
A(:,j) = s .* A(:,j+1);
end
        通过对包含范德蒙矩阵最后 d+1 列的线性系统求解,获得与数据 p 拟合的 d 次多项式的系数 cA(:,n-d:n)*c ~= p
        • 如果 d < 10 ,则方程个数多于未知数个数,并且最小二乘解是合适的。
        • 如果 d == 10 ,则可以精确求解方程,而多项式实际上会对数据进行插值。
        在任一种情况下,都可以使用反斜杠运算符来求解方程组。三次拟合的系数为:
c = A(:,n-3:n)\p
c = 4×1
-5.7042
27.9064
103.1528
155.1017
        现在,计算从 1910 年到 2010 年每一年的多项式,然后绘制结果。
v = (1910:2020)';
x = (v-1950)/50;
w = (2010-1950)/50;
y = polyval(c,x);
z = polyval(c,w);
hold on
plot(v,y, 'k-' );
plot(2010,z, 'ks' );
text(2010,z+15,num2str(z));
hold off
        将三次拟合与四次拟合进行比较。请注意,外插点完全不同。
c = A(:,n-4:n)\p;
y = polyval(c,x);
z = polyval(c,w);
hold on
plot(v,y, 'k-' );
plot(2010,z, 'ks' );
text(2010,z-15,num2str(z));
hold off

        随着阶数增加,外插变得越来越不可靠。
cla
plot(t,p, 'bo' )
hold on
axis([1910 2020 0 400])
colors = hsv(8);
labels = { 'data' };
for d = 1:8
[Q,R] = qr(A(:,n-d:n));
R = R(1:d+1,:);
Q = Q(:,1:d+1);
c = R\(Q'*p); % Same as c = A(:,n-d:n)\p;
y = polyval(c,x);
z = polyval(c,11);
plot(v,y, 'color' ,colors(d,:));
labels{end+1} = [ 'degree = ' int2str(d)];
end
legend(labels, 'Location' , 'NorthWest' )
hold off

 2.标量函数的根

2.1 对一元非线性方程求解

        fzero 函数尝试求一个一元方程的根。可以通过用于指定起始区间的单元素起点或双元素向量调用该函数。如果为 fzero 提供起点 x0 fzero 将首先搜索函数更改符号的点周围的区间。如果找到该区间,fzero 返回函数更改符号的位置附近的值。如果未找到此类区间, fzero 返回 NaN。或者,如果知道函数值的符号不同的两个点,可以使用双元素向量指定该起始区间; fzero 保证缩小该区间并返回符号更改处附近的值。
        以下部分包含两个示例,用于说明如何使用起始区间和起点查找函数的零元素。这些示例使用由MATLAB® 提供的函数 humps.m 。下图显示了 humps 的图。
x = -1:.01:2;
y = humps(x);
plot(x,y)
xlabel( 'x' );
ylabel( 'humps(x)' )
grid on

2.2 为 fzero 设置选项

        可以通过设置选项控制 fzero 函数的多个方面。使用 optimset 设置选项。选项包括:
        • 选择 fzero 生成的显示量 - 请参阅“设置优化选项” 、使用起始区间和使用起点。
        • 选择控制 fzero 如何确定它得到根的不同公差 - 请参阅“设置优化选项” 。
        • 选择用于观察 fzero 逼近根的进度的绘图函数 - 请参阅“优化求解器绘制函数” 。
        • 使用自定义编程的输出函数观察 fzero 逼近根的进度 - 请参阅“优化求解器输出函数” 。

2.3 使用起始区间

        humps 的图指示 x = -1 时函数为负数, x = 1 时函数为正数。可以通过计算这两点的 humps 进行确认。
humps(1)
ans = 16
humps(-1)
ans = -5.1378
        因此,可以将 [-1 1] 用作 fzero 的起始区间。fzero 的迭代算法可求 [-1 1] 越来越小的子区间。对于每个子区间, humps 在两个端点的符号不同。由于子区间的端点彼此越来越近,因此它们收敛到 humps 的零位置。要显示 fzero 在每个迭代过程中的进度,请使用 optimset 函数将 Display 选项设置为 iter
options = optimset( 'Display' , 'iter' );
        然后如下所示调用 fzero
a = fzero(@humps,[-1 1],options)
Func-count x f(x) Procedure
2 -1 -5.13779 initial
3 -0.513876 -4.02235 interpolation
4 -0.513876 -4.02235 bisection
5 -0.473635 -3.83767 interpolation
6 -0.115287 0.414441 bisection
7 -0.115287 0.414441 interpolation
8 -0.132562 -0.0226907 interpolation
9 -0.131666 -0.0011492 interpolation
10 -0.131618 1.88371e-07 interpolation
11 -0.131618 -2.7935e-11 interpolation
12 -0.131618 8.88178e-16 interpolation
13 -0.131618 8.88178e-16 interpolation
Zero found in the interval [-1, 1]
a = -0.1316
        每个值 x 代表迄今为止最佳的端点。 Procedure 列向您显示每步的算法是使用对分还是插值。可以通过输入以下内容验证 a 中的函数值是否接近零:
humps(a)
ans = 8.8818e-16
2.4 使用起点
        假定您不知道 humps 的函数值符号不同的两点。在这种情况下,可以选择标量 x0 作为 fzero 的起点。fzero 先搜索函数更改符号的点附近的区间。如果 fzero 找到此类区间,它会继续执行上一部分中介绍的算法。如果未找到此类区间, fzero 返回 NaN
        例如,将起点设置为 -0.2 ,将 Display 选项设置为 Iter ,并调用 fzero
options = optimset( 'Display' , 'iter' );
a = fzero(@humps,-0.2,options)
Search for an interval around -0.2 containing a sign change:
Func-count a f(a) b f(b) Procedure
1 -0.2 -1.35385 -0.2 -1.35385 initial interval
3 -0.194343 -1.26077 -0.205657 -1.44411 search
5 -0.192 -1.22137 -0.208 -1.4807 search
7 -0.188686 -1.16477 -0.211314 -1.53167 search
9 -0.184 -1.08293 -0.216 -1.60224 search
11 -0.177373 -0.963455 -0.222627 -1.69911 search
13 -0.168 -0.786636 -0.232 -1.83055 search
15 -0.154745 -0.51962 -0.245255 -2.00602 search
17 -0.136 -0.104165 -0.264 -2.23521 search
18 -0.10949 0.572246 -0.264 -2.23521 search
Search for a zero in the interval [-0.10949, -0.264]:
Func-count x f(x) Procedure
18 -0.10949 0.572246 initial
19 -0.140984 -0.219277 interpolation
20 -0.132259 -0.0154224 interpolation
21 -0.131617 3.40729e-05 interpolation
22 -0.131618 -6.79505e-08 interpolation
23 -0.131618 -2.98428e-13 interpolation
24 -0.131618 8.88178e-16 interpolation
25 -0.131618 8.88178e-16 interpolation
Zero found in the interval [-0.10949, -0.264]
a = -0.1316
        每个迭代中当前子区间的端点列在标题 a b 下,而端点处的相应 humps 值分别列在 f(a) f(b) 下。
        注意:端点 a b 未按任何特定顺序列出: a 可能大于 b 或小于 b
        对于前 9 步,humps 的符号在当前子区间的两端点都为负号,如输出中所示。在第 10 步, humps 的符号在 a ( -0.10949 ) 处为正号,但在 b ( -0.264) 处为负号。从该点开始,如上一部分中所述,算法继续缩小区间 [-0.10949 -0.264] ,直到它达到值 -0.1316

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52130.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

uniapp 安卓平台签名证书(.keystore)生成

安装JRE环境 下载jre安装包&#xff1a;https://www.oracle.com/java/technologies/downloads/#java8安装jre安装包时&#xff0c;记录安装目录(例:C:\Program Files\Java\jdk-20)打开命令行&#xff08;cmd&#xff09;&#xff0c;将JRE安装路径添加到系统环境变量 d: se…

PostgreSQL基本操作总结

安装按PostgreSQL数据库后&#xff0c;会默认创建用户postgres和数据库postgres&#xff0c;这个用户是超级用户&#xff0c;权限最高&#xff0c;可以创建其他用户和权限&#xff0c;在实际开发过程中&#xff0c;会新创建用户和业务数据库&#xff0c;本文主要介绍用户权限和…

Redis Pub/Sub 指南

Redis 不仅仅是一个数据库&#xff0c;还可以作为支持发布和订阅&#xff08;Pub/Sub&#xff09;操作的消息代理。本文将使用 Navicat for Redis 简要概述 Redis 的 Pub/Sub 功能。 关于发布或订阅消息范式 Pub/Sub 是一种模式&#xff0c;发送者&#xff08;广播者&#xf…

分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测

分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测 目录 分类预测 | MATLAB实现SCNGO-CNN-LSTM-Attention数据分类预测分类效果基本描述程序设计参考资料 分类效果 基本描述 1.SCNGO-CNN-LSTM-Attention数据分类预测程序&#xff0c;改进算法&#xff0c;融合正余弦和…

最新ChatGPT网站程序源码+AI系统+详细图文搭建教程/支持GPT4.0/AI绘画/H5端/Prompt知识库

一、前言 SparkAi系统是基于国外很火的ChatGPT进行开发的Ai智能问答系统。本期针对源码系统整体测试下来非常完美&#xff0c;可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软件系统。 那么如何搭建部署AI创作ChatGPT&#xff1f;小编这里写一个详细图文教程吧&#xff01…

集合相关知识

1.为什么使用集合 如果让你统计公司每个月的销售额&#xff0c;你会用数组吗&#xff1f;由于数组创建时需要指定其长度&#xff0c;而且不能改变。集合不需要指定长度&#xff0c;空间不够集合自己会调整。集合里有很多见名知意的方法。 java1.8之后新有的removeIf用法 remove…

MySQL 日志

目录 一、日志概述 二、二进制日志 1、开启二进制日志 2、查看二进制文件 3、删除二进制日志文件 4、恢复二进制日志 5、暂时停止二进制日志功能 三、错误日志 1、启动和设置错误日志 2、查看错误日志 3、删除错误日志 四、通用查询日志 五、慢查询日志 一、日志概…

数组分割(2023省蓝桥杯)n种讨论 JAVA

目录 1、题目描述&#xff1a;2、前言&#xff1a;3、动态规划&#xff08;bug)&#xff1a;3、递归 剪枝&#xff08;超时&#xff09;&#xff1a;4、数学&#xff08;正解&#xff09;&#xff1a; 1、题目描述&#xff1a; 小蓝有一个长度为 N 的数组 A [A0, A1,…, AN−…

【⑭MySQL | 数据类型(二)】字符串 | 二进制类型

前言 ✨欢迎来到小K的MySQL专栏&#xff0c;本节将为大家带来MySQL字符串 | 二进制类型类型的分享✨ 目录 前言5 字符串类型6 二进制类型总结 5 字符串类型 字符串类型用来存储字符串数据&#xff0c;还可以存储图片和声音的二进制数据。字符串可以区分或者不区分大小写的串比…

PDF如何转ppt?PDF转ppt的方法

PDF是一种广泛应用于文档传输和存储的格式&#xff0c;然而&#xff0c;在某些情况下&#xff0c;我们可能需要将PDF文件转换为PPT&#xff0c;以便更加灵活地编辑和展示内容。那么&#xff0c;PDF如何转ppt呢?在本文中&#xff0c;我们将介绍几种常用的方法和工具&#xff0c…

总结:Git 撤销操作

1、还未添加到暂存区&#xff1a;git checkout -- filename 执行命令后&#xff0c;会回退到未修改之前的状态 2、已经添加到暂存区&#xff1a;git reset HEAD filename 执行命令后&#xff0c;会回退到工作区之前的状态 3、已经 commit&#xff0c;但是还未 push git reset…

VLOOKUP

VLOOKUP简单应用 VLOOKUP(A1,B:B,1,FALSE) 是查询A1这子格子的数据在B这一列里面有没有找到相同数据的值,如果有的话就放在当前格子里面去 如果没有的话就是#NA VLOOKUP(A1,F:G,2,FALSE) 是查询A1这子格子的数据在F列查相同的数据,然后再取G列这一行后面的这个格子的数据放到…

【算法刷题之哈希表(2)】

目录 1.leetcode-454. 四数相加 II2.leetcode-383. 赎金信&#xff08;1&#xff09;暴力解法&#xff08;2&#xff09;哈希法 3.leetcode-205. 同构字符串&#xff08;1&#xff09;哈希法&#xff08;2&#xff09;直接对比查找 4.leetcode-128. 最长连续序列5.总结 1.leetc…

mysql-sql性能分析工具

一、sql执行频率 MySQL 客户端连接成功后&#xff0c;通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令&#xff0c;可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次&#xff1a; -- session 是查看当前会话 ; -- global 是查询全…

【硕士论文完美复现】【价格型需求响应】基于需求侧响应的配电网供电能力综合评估(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

七大排序算法详解

1.概念 1.排序的稳定性 常见的稳定的排序有三种&#xff1a;直接插入排序&#xff0c;冒泡排序&#xff0c;归并排序 对于一组数据元素排列&#xff0c;使用某种排序算法对它进行排序&#xff0c;若相同数据之间的前后位置排序后和未排序之前是相同的&#xff0c;我们就成这种…

vue3 vite使用 monaco-editor 报错

报错&#xff1a;Unexpected usage at EditorSimpleWorker.loadForeignModule 修改配置&#xff1a; "monaco-editor-webpack-plugin": "^4.2.0",删除不用 版本&#xff1a; "monaco-editor": "^0.28.1", 修改如下&#xff1a; opti…

stm32 无刷电机 V/F控制(无刷电机变频控制)以及与foc(矢量控制)的区别

无刷电机有三种控制方式&#xff0c;方波控制&#xff0c;foc控制以及变频控制&#xff0c;前两章我们讲解了方波和foc的控制方法&#xff0c;今天我们一起来讲一讲什么是无刷电机的变频控制&#xff08;VF&#xff09;以及变频控制的优势是什么。 实验用的硬件还是KY_Motor的无…

IDEA远程开发

IDEA远程开发 前期准备 IDEA的远程开发是在本地去操昨远程服务器上的代码&#xff0c;所以我们先需要准备一台服务器,在此我使用vmware虚拟出ubuntu-20.04.6的Server版本,以便后面演示。 Ubuntu的Java环境配置 JDK8 sudo apt install openjdk-8-jdkmaven sudo apt instal…

三星申请新商标:未来将应用于智能戒指,作为XR头显延伸设备

三星最近向英国知识产权局提交了名为“Samsung Curio”的新商标&#xff0c;这预示着三星正积极扩展可穿戴设备生态。该商标被分类为“Class 9”&#xff0c;这表明它有可能被用于未来的智能戒指。 据报道&#xff0c;三星计划将智能戒指作为XR头显设备的延伸&#xff0c;与苹果…