【数据库】Mysql中的索引与失效场景

1、前言

MySQL中数据表设计合理的索引对提高性能很有帮助。使用索引可以快速地定位表中的某条记录,从而提高数据库查询的速度,提高数据库的性能。
大多数情况下都(默认)采用B+ 树来构建索引。只是空间列类型的索引使R- 树,并且MEMORY 表还支持hash 索引。其实,用不用索引最终都是优化器说了算。 执行优化器是基于cost开销(CostBaseOptimizer) ,它不是基于规则( Rule-BasedOptimizer),也不是基于语义。另外 SQL 语句是否使用索引,跟数据库版本、数据量、数据选择度都有关系。但是,还是有一些明显的规则可以去判别是否索引失效,比如:最左匹配原则、数据类型转换、反向判断等。

1.1、索引类型

MySQL支持多种类型的索引结构,包括B+tree、Hash、R-tree和Full-text等。
B+tree索引:MySQL中最常用的一种索引结构。B+tree是一种平衡树,每个节点的度数在一个范围之内,并且每个叶子节点都在同一层上。B+tree索引可以在极短的时间内进行查找、排序和插入等操作,适合于较小的索引和范围查询。
Hash索引:一种使用哈希表实现的索引结构。哈希索引在存储数据时将key和值映射到一个哈希表中的位置,查询时可以直接通过计算key的哈希值来快速访问数据。哈希索引适合等值查询(即查询操作中通过“=”来查询数据)。
R-tree索引:一种用于存储和查询基于位置的数据的索引结构。R-tree索引可以在地理信息系统(GIS)中使用,用于查询特定区域内的位置数据。
Full-text索引:一种用于对文本列进行全文搜索的索引结构。Full-text索引可以在文本中查找关键字和短语,并返回匹配的行。Full-text索引适合于对大量文本数据进行搜索和过滤的场景。

1.2 分析工具EXPLAIN

例子:

explain select * from person where age = 9
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_age_IDXperson_age_IDX5const1100.0
字段含义
id执行select查询语句的序号,它是sql执行的顺序的标识,sql按照id从大到小执行,id相同的为一组,从上到下执行
select_type查询的类型,也就是对应的是简单查询还是复杂查询
table表名
partitions当前查询匹配记录的分区。对于未分区的表,返回null
type连接类型,有如下几种取值,性能从好到坏排序:system>const>eq_ref>ref>index_merge>range>index>ALL
possible_keys展示当前查询可以使用哪些索引,这一列的数据是在优化过程的早期创建的,因此有些索引可能对于后续优化过程是没用的
key表示MySQL实际选择的索引
key_len索引使用的字节数。由于存储格式,当字段允许为NULL时,key_len比不允许为空时大1字节
rowsMySQL估算会扫描的行数,数值越小越好
ref表示将哪个字段或常量和key列所使用的字段进行比较
filtered表示符合查询条件的数据百分比,最大100。用rows × filtered可获得和下一张表连接的行数。例如rows = 1000,filtered = 50%,则和下一张表连接的行数是500
Extra展示有关本次查询的附加信息

1.2、优化器跟踪(Optimizer Trace)

这个优化器跟踪的目的是生成可被人类和程序读取的输出,以帮助理解MySQL优化器所采取的决策和操作。
开启操作语法:

SET SESSION OPTIMIZER_TRACE="enabled=on"; # enable tracing<statement to trace>; # like SELECT, EXPLAIN SELECT, UPDATE, DELETE...SELECT * FROM information_schema.OPTIMIZER_TRACE;[ repeat last two steps at will ]SET SESSION OPTIMIZER_TRACE="enabled=off"; # disable tracing

下面举个例子:
该例子用的数据下面person表中的,可以参考2、数据准备

explain select * from person where age not in (9); 
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_age_IDX7100.0Using where

优化选择过程:

SET optimizer_trace="enabled=on";  
select * from person where age not in (9); 
SELECT * FROM information_schema.OPTIMIZER_TRACE;  
SET optimizer_trace="enabled=off"; 

结果:
从分解过程中可以看到best_access_path中使用了scan,cost为2.4。

join_preparation:完成SQL的准备工作。在这个阶段,SQL语句会被格式化输出,通配符*会被具体字段代替,但不会进行等价改写动作。传入的SQL语句是select * from person where age not in (9)的结果。在完成了语句的补充、格式化后,准备阶段结束并进入下一阶段。

join_optimization:完成SQL语句的逻辑与物理优化的过程,这其中的优化步骤比较多。在展开具体内容之前,先解释下”select #”的问题。在输出中经常会看到有”select#:N”的字样,它表示当前跟踪的结构体是属于第几个SELECT。如果语句中使用多个SELECT语句拼接(如UNION)或者有嵌套子查询中有SELECT,会产生多个序号。

considered_execution_plans :对比实际的不同路径的成本。如果是多表关联,且有存在执行顺序(如left/right join或straight_join来强制指定顺序),则在plan_prefix部分会有前置条件;否则,就按照所有可能性评估。

{"steps": [{"join_preparation": {"select#": 1,"steps": [{"expanded_query": "/* select#1 */ select `person`.`id` AS `id`,`person`.`age` AS `age`,`person`.`code` AS `code`,`person`.`name` AS `name`,`person`.`weight` AS `weight`,`person`.`height` AS `height`,`person`.`deleted` AS `deleted` from `person` where (`person`.`age` <> 9) limit 0,200"}]}},{"join_optimization": {"select#": 1,"steps": [{"condition_processing": {"condition": "WHERE","original_condition": "(`person`.`age` <> 9)","steps": [{"transformation": "equality_propagation","resulting_condition": "(`person`.`age` <> 9)"},{"transformation": "constant_propagation","resulting_condition": "(`person`.`age` <> 9)"},{"transformation": "trivial_condition_removal","resulting_condition": "(`person`.`age` <> 9)"}]}},{"substitute_generated_columns": {}},{"table_dependencies": [{"table": "`person`","row_may_be_null": false,"map_bit": 0,"depends_on_map_bits": []}]},{"ref_optimizer_key_uses": []},{"rows_estimation": [{"table": "`person`","range_analysis": {"table_scan": {"rows": 7,"cost": 4.5},"potential_range_indexes": [{"index": "PRIMARY","usable": false,"cause": "not_applicable"},{"index": "person_age_IDX","usable": true,"key_parts": ["age","id"]},{"index": "person_code_IDX","usable": false,"cause": "not_applicable"},{"index": "person_height_IDX","usable": false,"cause": "not_applicable"}],"setup_range_conditions": [],"group_index_range": {"chosen": false,"cause": "not_group_by_or_distinct"},"analyzing_range_alternatives": {"range_scan_alternatives": [{"index": "person_age_IDX","ranges": ["NULL < age < 9","9 < age"],"index_dives_for_eq_ranges": true,"rowid_ordered": false,"using_mrr": false,"index_only": false,"rows": 7,"cost": 10.41,"chosen": false,"cause": "cost"}],"analyzing_roworder_intersect": {"usable": false,"cause": "too_few_roworder_scans"}}}}]},{"considered_execution_plans": [{"plan_prefix": [],"table": "`person`","best_access_path": {"considered_access_paths": [{"rows_to_scan": 7,"access_type": "scan","resulting_rows": 7,"cost": 2.4,"chosen": true}]},"condition_filtering_pct": 100,"rows_for_plan": 7,"cost_for_plan": 2.4,"chosen": true}]},{"attaching_conditions_to_tables": {"original_condition": "(`person`.`age` <> 9)","attached_conditions_computation": [],"attached_conditions_summary": [{"table": "`person`","attached": "(`person`.`age` <> 9)"}]}},{"refine_plan": [{"table": "`person`"}]}]}},{"join_execution": {"select#": 1,"steps": []}}]
}

2、数据准备

version()
5.7.28-log

创建数据库:

CREATE DATABASE `demo` /*!40100 DEFAULT CHARACTER SET latin1 */;

创建表:ageheight为普通索引,codenameweight为组合索引。

-- demo.person definitionCREATE TABLE `person` (`id` bigint(20) NOT NULL AUTO_INCREMENT COMMENT '主键id',`age` int(11) DEFAULT NULL COMMENT '年龄',`code` varchar(100) DEFAULT NULL COMMENT '编码',`name` varchar(50) DEFAULT NULL COMMENT '名字',`weight` int(3) DEFAULT NULL COMMENT '体重',`height` int(3) DEFAULT NULL COMMENT '身高',`deleted` tinyint(1) NOT NULL DEFAULT '0' COMMENT '是否删除  0 1',PRIMARY KEY (`id`),KEY `person_age_IDX` (`age`) USING BTREE,KEY `person_code_IDX` (`code`,`name`,`weight`) USING BTREE,KEY `person_height_IDX` (`height`) USING BTREE
) ENGINE=InnoDB AUTO_INCREMENT=0 DEFAULT CHARSET=utf8mb4;

插入数据:

INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(12, '4545345345342', '奥特曼', 15, 89, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(52, '552421231332', '卫斯理', 21, 45, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(87, '85124561321', '福尔摩斯', 50, 180, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(56, '86454212', '爱因斯坦', 56, 190, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(45, '86454212', '爱威立雅', 108, 172, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(10, '8754534', '爱尔兰', 78, 169, 0);
INSERT INTO demo.person (age, code, name, weight, height, deleted) VALUES(9, '867564233', '小兰', 98, 150, 0);

3、举例说明

1、普通索引

explain select * from person
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALL7100.0

索引有效=

explain select * from person where age = 9
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_age_IDXperson_age_IDX5const1100.0

发生值类型转换:'9',依然有效。有些博文中说这个不行,万事没有绝对。

explain select * from person where age = '9'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_age_IDXperson_age_IDX5const1100.0

索引失效>

explain select * from person where age > 9
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_age_IDX785.71Using where

索引有效in

explain select * from person where age in(9)
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_age_IDXperson_age_IDX5const1100.0

in索引不一定有效,如下面的情形,in的范围比较大时,索引失效。

explain select * from person where age  in (9,10,28,56,41,50,92,20,12,51,54,2,45,2)
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_age_IDX7100.0Using where

索引失效not in

explain select * from person where age not in (9)
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_age_IDX7100.0Using where

2、组合索引(联合摄影)

该组合索引是:code,name,weight

最左匹配原则:
MySQL 建立多列索引(联合索引)有最左匹配的原则,即最左优先:如果有一个 2 列的索引 (a, b),则已经对 (a)、(a, b) 上建立了索引;如果有一个 3 列索引 (a, b, c),则已经对 (a)、(a, b)、(a, b, c) 上建立了索引。
只有code 索引有效:

explain select * from person where code = '11222' 
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX403const1100.0

name 索引失效:

explain select * from person where name = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALL714.29Using where

顺序为code,name时有效:

explain select * from person where code  = '111' and name = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX606const,const1100.0

顺序为name,code时也有效,优化器会优化为:code,name

explain select * from person where name  = '111' and code = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX606const,const1100.0

优化器分析过程:

{"steps": [{"join_preparation": {"select#": 1,"steps": [{"expanded_query": "/* select#1 */ select `person`.`id` AS `id`,`person`.`age` AS `age`,`person`.`code` AS `code`,`person`.`name` AS `name`,`person`.`weight` AS `weight`,`person`.`height` AS `height`,`person`.`deleted` AS `deleted` from `person` where ((`person`.`name` = '111') and (`person`.`code` = '小兰')) limit 0,200"}]}},{"join_optimization": {"select#": 1,"steps": [{"condition_processing": {"condition": "WHERE","original_condition": "((`person`.`name` = '111') and (`person`.`code` = '小兰'))","steps": [{"transformation": "equality_propagation","resulting_condition": "((`person`.`name` = '111') and (`person`.`code` = '小兰'))"},{"transformation": "constant_propagation","resulting_condition": "((`person`.`name` = '111') and (`person`.`code` = '小兰'))"},{"transformation": "trivial_condition_removal","resulting_condition": "((`person`.`name` = '111') and (`person`.`code` = '小兰'))"}]}},{"substitute_generated_columns": {}},{"table_dependencies": [{"table": "`person`","row_may_be_null": false,"map_bit": 0,"depends_on_map_bits": []}]},{"ref_optimizer_key_uses": [{"table": "`person`","field": "code","equals": "'小兰'","null_rejecting": false},{"table": "`person`","field": "name","equals": "'111'","null_rejecting": false}]},{"rows_estimation": [{"table": "`person`","range_analysis": {"table_scan": {"rows": 7,"cost": 4.5},"potential_range_indexes": [{"index": "PRIMARY","usable": false,"cause": "not_applicable"},{"index": "person_age_IDX","usable": false,"cause": "not_applicable"},{"index": "person_code_IDX","usable": true,"key_parts": ["code","name","weight","id"]},{"index": "person_height_IDX","usable": false,"cause": "not_applicable"}],"setup_range_conditions": [],"group_index_range": {"chosen": false,"cause": "not_group_by_or_distinct"},"analyzing_range_alternatives": {"range_scan_alternatives": [{"index": "person_code_IDX","ranges": ["小兰 <= code <= 小兰 AND 111 <= name <= 111"],"index_dives_for_eq_ranges": true,"rowid_ordered": false,"using_mrr": false,"index_only": false,"rows": 1,"cost": 2.21,"chosen": true}],"analyzing_roworder_intersect": {"usable": false,"cause": "too_few_roworder_scans"}},"chosen_range_access_summary": {"range_access_plan": {"type": "range_scan","index": "person_code_IDX","rows": 1,"ranges": ["小兰 <= code <= 小兰 AND 111 <= name <= 111"]},"rows_for_plan": 1,"cost_for_plan": 2.21,"chosen": true}}}]},{"considered_execution_plans": [{"plan_prefix": [],"table": "`person`","best_access_path": {"considered_access_paths": [{"access_type": "ref","index": "person_code_IDX","rows": 1,"cost": 1.2,"chosen": true},{"access_type": "range","range_details": {"used_index": "person_code_IDX"},"chosen": false,"cause": "heuristic_index_cheaper"}]},"condition_filtering_pct": 100,"rows_for_plan": 1,"cost_for_plan": 1.2,"chosen": true}]},{"attaching_conditions_to_tables": {"original_condition": "((`person`.`name` = '111') and (`person`.`code` = '小兰'))","attached_conditions_computation": [],"attached_conditions_summary": [{"table": "`person`","attached": null}]}},{"refine_plan": [{"table": "`person`"}]}]}},{"join_execution": {"select#": 1,"steps": []}}]
}

code,name,weight顺序索引有效:

explain select * from person where code  = '111' and name = '小兰' and weight  = 52
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0

order by 索引有效:

explain select * from person where code  = '111' and name = '小兰' and weight  = 52 order by code,name,weight
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0
explain select * from person where code  = '111' and name = '小兰' and weight  = 52 order by name,weight
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0
explain select * from person where code  = '111' and name = '小兰' and weight  = 52 order by weight,name
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0
explain select * from person where code  = '111' and name = '小兰' and weight  = 52 order by weight,age
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0Using index condition; Using filesort

code,weight,name顺序索引有效,优化器会优化为code,name,weight

explain select * from person where code  = '111'  and weight  = 52 and name = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX611const,const,const1100.0

code,weight索引有效,索引有效值为 code

explain select * from person where code  = '111'  and weight  = 52
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX403const114.29Using index condition

code,weight>,name 索引有效,索引有效值为 code

explain select * from person where code  = '111'  and weight  > 52 and name = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrangeperson_code_IDXperson_code_IDX6111100.0Using index condition

length(code)包含函数,索引失效,但是这个不一定,要看数据版本,数据量等:

explain select * from person where length(code)>10
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALL7100.0Using where

索引有效:

explain select count(1) from person where code = '86454212'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX403const2100.0Using index

索引有效:

explain select sum(age) from person where code = '86454212'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrefperson_code_IDXperson_code_IDX403const2100.0

索引有效:

explain select * from person where code like '86454212'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrangeperson_code_IDXperson_code_IDX4032100.0Using index condition

索引无效:

explain select * from person where code like '%86454212'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALL714.29Using where

索引有效:

explain select * from person where code like '86454212%'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonrangeperson_code_IDXperson_code_IDX4032100.0Using index condition

or索引无效:

explain select * from person where code  = '111' or name = '小兰'
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_code_IDX726.53Using where

组合索引和普通索引一起,索引无效:

explain select * from person where code  = '111' or age = 9
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonALLperson_age_IDX,person_code_IDX726.53Using where

普通索引和普通索引一起,索引无效:

explain select * from person where age = 9 or height  = 90
idselect_typetablepartitionstypepossible_keyskeykey_lenrefrowsfilteredExtra
1SIMPLEpersonindex_mergeperson_age_IDX,person_height_IDXperson_age_IDX,person_height_IDX5,52100.0Using union(person_age_IDX,person_height_IDX); Using where

3、总结

  • 最佳左匹配法则(重点)
  • 计算、函数、类型转换(自动或手动)导致索引失效
  • 范围条件右边的列索引失效
  • 不等于(!= 或者<>)导致索引失效
  • is null可以使用索引,is not null无法使用索引
  • like以通配符%开头索引失效(重点)
  • OR 前后只要存在非索引的列,都会导致索引失效

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/52119.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

集合相关知识

1.为什么使用集合 如果让你统计公司每个月的销售额&#xff0c;你会用数组吗&#xff1f;由于数组创建时需要指定其长度&#xff0c;而且不能改变。集合不需要指定长度&#xff0c;空间不够集合自己会调整。集合里有很多见名知意的方法。 java1.8之后新有的removeIf用法 remove…

MySQL 日志

目录 一、日志概述 二、二进制日志 1、开启二进制日志 2、查看二进制文件 3、删除二进制日志文件 4、恢复二进制日志 5、暂时停止二进制日志功能 三、错误日志 1、启动和设置错误日志 2、查看错误日志 3、删除错误日志 四、通用查询日志 五、慢查询日志 一、日志概…

Qt 信号槽连接方式

使用示例&#xff1a; QObject::connect(sender, SIGNAL(signal()), receiver, SLOT(slot()), Qt::AutoConnection); 目录 连接方式 一、AutoConnection 二、DirectConnection 三、QueuedConnection 四、BlockingQueuedConnection 五、UniqueConnection 总结 连接方式 "q…

IPC之System V vs POSIX

文章目录 IPC示例共享内存POSIX shmSystem V shm IPC 当谈到IPC&#xff08;Inter-Process Communication&#xff0c;进程间通信&#xff09;时&#xff0c;它是指不同进程之间进行数据交换和通信的机制。 它允许在操作系统中运行的不同进程之间传输数据&#xff0c;这些进程…

Shell 编程:探索 Shell 的基本概念与用法

目录 Shell 简介 Shell 脚本 Shell 脚本运行 Shell 变量 1、创建变量和赋值 2、引用变量 3、修改变量的值 4、只读变量 5、删除变量 6、环境变量 Shell 字符串操作 1、拼接字符串 2、字符串长度 3、字符串截取 Shell 数组 1、创建数组 2、访问数组元素 shell …

数组分割(2023省蓝桥杯)n种讨论 JAVA

目录 1、题目描述&#xff1a;2、前言&#xff1a;3、动态规划&#xff08;bug)&#xff1a;3、递归 剪枝&#xff08;超时&#xff09;&#xff1a;4、数学&#xff08;正解&#xff09;&#xff1a; 1、题目描述&#xff1a; 小蓝有一个长度为 N 的数组 A [A0, A1,…, AN−…

【⑭MySQL | 数据类型(二)】字符串 | 二进制类型

前言 ✨欢迎来到小K的MySQL专栏&#xff0c;本节将为大家带来MySQL字符串 | 二进制类型类型的分享✨ 目录 前言5 字符串类型6 二进制类型总结 5 字符串类型 字符串类型用来存储字符串数据&#xff0c;还可以存储图片和声音的二进制数据。字符串可以区分或者不区分大小写的串比…

.net6.0引用的dll放置单独的文件夹

.net6.0 采用原有的设置方法不起作用 <?xml version"1.0" encoding"utf-8" ?> <configuration><startup> <supportedRuntime version"v4.0" sku".NETFramework,Versionv4.8" /></startup><runtim…

PDF如何转ppt?PDF转ppt的方法

PDF是一种广泛应用于文档传输和存储的格式&#xff0c;然而&#xff0c;在某些情况下&#xff0c;我们可能需要将PDF文件转换为PPT&#xff0c;以便更加灵活地编辑和展示内容。那么&#xff0c;PDF如何转ppt呢?在本文中&#xff0c;我们将介绍几种常用的方法和工具&#xff0c…

总结:Git 撤销操作

1、还未添加到暂存区&#xff1a;git checkout -- filename 执行命令后&#xff0c;会回退到未修改之前的状态 2、已经添加到暂存区&#xff1a;git reset HEAD filename 执行命令后&#xff0c;会回退到工作区之前的状态 3、已经 commit&#xff0c;但是还未 push git reset…

ImageReader保存图片转 opencvmat

目录 ImageReader 直接保存图片&#xff0c;没成功&#xff0c;格式是yuv420&#xff0c;需要转换 转opencv nv21保存图片&#xff0c;测试ok rgb888 data保存图片&#xff1a; ImageReader 直接保存图片&#xff0c;没成功&#xff0c;格式是yuv420&#xff0c;需要转换 …

VLOOKUP

VLOOKUP简单应用 VLOOKUP(A1,B:B,1,FALSE) 是查询A1这子格子的数据在B这一列里面有没有找到相同数据的值,如果有的话就放在当前格子里面去 如果没有的话就是#NA VLOOKUP(A1,F:G,2,FALSE) 是查询A1这子格子的数据在F列查相同的数据,然后再取G列这一行后面的这个格子的数据放到…

Python学习笔记_进阶篇(三)_django知识(二)

本章内容 Django model Model 基础配置 django默认支持sqlite&#xff0c;mysql, oracle,postgresql数据库。 <1> sqlite django默认使用sqlite的数据库&#xff0c;默认自带sqlite的数据库驱动 引擎名称&#xff1a;django.db.backends.sqlite3 <2>mysql …

【算法刷题之哈希表(2)】

目录 1.leetcode-454. 四数相加 II2.leetcode-383. 赎金信&#xff08;1&#xff09;暴力解法&#xff08;2&#xff09;哈希法 3.leetcode-205. 同构字符串&#xff08;1&#xff09;哈希法&#xff08;2&#xff09;直接对比查找 4.leetcode-128. 最长连续序列5.总结 1.leetc…

solidity0.8.0的应用案例14:空投合约

空投是币圈中一种营销策略,项目方将代币免费发放给特定用户群体。为了拿到空投资格,用户通常需要完成一些简单的任务,如测试产品、分享新闻、介绍朋友等。项目方通过空投可以获得种子用户,而用户可以获得一笔财富,两全其美。 因为每次接收空投的用户很多,项目方不可能一…

mysql-sql性能分析工具

一、sql执行频率 MySQL 客户端连接成功后&#xff0c;通过 show [session|global] status 命令可以提供服务器状态信息。通过如下指令&#xff0c;可以查看当前数据库的INSERT、UPDATE、DELETE、SELECT的访问频次&#xff1a; -- session 是查看当前会话 ; -- global 是查询全…

启动docker容器的几种方法和注意事项(docker-compose,dockerfile)

1&#xff1a;要启动容器必须都先创建好镜像文件 C:\Users\dell>docker images REPOSITORY TAG IMAGE ID CREATED SIZE poi 1.0 22738bb31074 4 hours ago 105MB redis latest 506734eb5e71 6 days ago 138MB ng…

【硕士论文完美复现】【价格型需求响应】基于需求侧响应的配电网供电能力综合评估(Matlab代码实现)

&#x1f4a5;&#x1f4a5;&#x1f49e;&#x1f49e;欢迎来到本博客❤️❤️&#x1f4a5;&#x1f4a5; &#x1f3c6;博主优势&#xff1a;&#x1f31e;&#x1f31e;&#x1f31e;博客内容尽量做到思维缜密&#xff0c;逻辑清晰&#xff0c;为了方便读者。 ⛳️座右铭&a…

最新基于Citespace、vosviewer、R语言的文献计量学可视化分析技术及全流程文献可视化SCI论文高效写作

文献计量学是指用数学和统计学的方法&#xff0c;定量地分析一切知识载体的交叉科学。它是集数学、统计学、文献学为一体&#xff0c;注重量化的综合性知识体系。特别是&#xff0c;信息可视化技术手段和方法的运用&#xff0c;可直观的展示主题的研究发展历程、研究现状、研究…

七大排序算法详解

1.概念 1.排序的稳定性 常见的稳定的排序有三种&#xff1a;直接插入排序&#xff0c;冒泡排序&#xff0c;归并排序 对于一组数据元素排列&#xff0c;使用某种排序算法对它进行排序&#xff0c;若相同数据之间的前后位置排序后和未排序之前是相同的&#xff0c;我们就成这种…