七个不容易被发现的生成对抗网络(GAN)用例

像许多追随AI发展的人一样,我无法忽略生成建模的最新进展,尤其是图像生成中生成对抗网络(GAN)的巨大成功。看看下面这些样本:它们与真实照片几乎没有区别!

 

从2014年到2018年,面部生成的进展也非常显着。

这些结果让我感到兴奋,但我内心总是怀疑它们是否真的有用且广泛适用。基本上我“怀疑”,凭借生成模型的所有功能,我们并没有真正将它们用于比高分辨率面部表情生成这些更实用的东西。当然,有些企业可以直接基于图像生成或风格转移(如游戏行业中的角色生成或关卡生成,从真实照片到动漫头像的风格转换),但我一直在寻找GAN和其他生成方式更多领域模型的应用。我想通过生成模型,我们不仅可以生成图像,还可以生成文本、声音、音乐、结构化数据,如游戏关卡或药物分子。

在本文中,我将介绍7个用例。其中一些我已经亲自确认它们的用处,其他一些正在研究中,但这并不意味着它们不值得尝试。所有这些使用生成模型创建的例子都可以应用于不同的领域,因为我们的主要目标不是生成一些现实的东西,而是利用神经网络的内在知识来完成新任务。

1.数据增强

最明显的应用是训练模型:从我们的数据生成新样本以增强我们的数据集。我们如何检查这种增强是否真的有帮助呢?有两个主要策略:我们可以在“假”数据上训练我们的模型,并检查它在真实样本上的表现。对应的我们在实际数据上训练我们的模型来做一些分类任务,并且检查它对生成的数据的执行情况。如果它在两种情况下都能正常工作,你可以随意将生成模型中的样本添加到你的实际数据中并再次重新训练,你应该期望获得性能。

NVIDIA展示了这种方法的惊人实例:他们使用GAN来增加具有不同疾病的医学脑CT图像的数据集,并且表明仅使用经典数据的分类性能是78.6%的灵敏度和88.4%的特异性。通过添加合成数据增强,可以增加到85.7%的灵敏度和92.4%的特异性。

 

2.隐私保护

许多公司的数据可能是秘密的,敏感的(包含患者诊断的医疗数据),但有时我们需要与顾问或研究人员等第三方分享。如果我们只想分享关于我们的数据的一般信息,包括最重要的模式,对象的细节和形状,我们可以使用生成模型来抽样我们的数据示例以与其他人分享。这样我们就不会分享任何确切的机密数据,只是看起来完全像它的东西。

更困难的情况是我们想要秘密共享数据。当然,我们有不同的加密方案,如同态加密,但它们有已知的缺点,例如在10GB代码中隐藏1MB信息。2016年,谷歌开辟了一条关于使用GAN竞争框架加密问题的新研究路径,其中两个网络必须竞争创建代码并破解它:

 

但最好的结果不是获得的代码效率,我们应该记住,通过神经网络获得的表示通常包含有关输入数据的最有用的信息,并且从这个压缩数据我们仍然可以进行分类/回归/聚类。如果我们将“压缩”替换为“加密”,那么这个想法很明确:这是与第三方共享数据而不显示任何数据集的惊人方式。它比匿名甚至假样本生成强得多,可能是下一件大事(当然使用区块链)

3.异常检测

变分自动编码器(VAE)或GAN等主要生成模型由两部分组成。VAE具有编码器和解码器,其中第一个对分布进行建模,第二个重建。GAN由生成器和鉴别器组成,第一个模拟分布,第二个判断它是否接近训练数据。我们可以看到,它们在某种程度上非常相似:有建模和判断部分(在VAE中我们可以考虑将重建视为某种判断),建模部分应该学习数据分布。如果我们将一些不是来自训练样本分发,那么判断部分将会发生什么?训练有素的GAN鉴别器会告诉我们0,并且VAE的重建误差将高于训练数据的平均值。这就是我们接下来要说的:无监督异常探测器,它易于训练和评估。在本文中你可以找到例子是用于异常检测,这里可以找到自动编码的。我还添加了自己的基于自动编码器的粗略草图——用于在Keras中编写的时间序列。

4.判别性建模

深度学习所做的一切都是将输入数据映射到某个空间,在这个空间中,通过SVM或逻辑回归等简单的数学模型可以更容易地分离或解释。生成模型也有自己的映射,我们从VAE开始。Autoencoders将输入样本映射到一些有意义的潜在空间,基本上我们可以直接训练一些模型。它有意义吗?它是否与仅使用编码器层和训练模型直接进行分类有所不同?确实是。自动编码器的潜在空间是复杂的非线性降维,并且在变分自动编码器的情况下也是多变量分布,这可以比一些随机初始化更好地开始训练判别模型。

GAN对于其他任务来说有点难度。它们被设计为从随机种子生成样本,并且不期望任何输入。但我们仍然可以至少以两种方式利用它们作为分类器,第一个已经研究过的,就是利用鉴别器将生成的样本分类到不同的类别,同时只是告诉它是真的还是假的。我们可以期望从获得的分类器更好地规则化(因为它已经看到不同类型的噪声和输入数据的扰动)并且具有用于异常值/异常的额外类:

5.域迁移(Domain adaptation)

我认为,这是最强大的用处之一。在实践中,我们几乎从未拥有相同的数据源来训练模型并在现实世界环境中运行它们。在计算机视觉中,不同的光线条件、相机设置或天气可以使非常准确的模型变得无用。在NLP/语音分析中,俚语或重音会破坏你在“语法正确”上训练的模型的表现。在信号处理中,你很可能拥有完全不同的设备来捕获数据以训练模型和生产。我们知道机器学习模型执行是从一个条件到另一个条件的映射,保留主要内容,但要更改细节。

例如,如果你正在处理应该在某种CCTV摄像机上工作的应用程序,但是你已经在高分辨率图像上训练了你的模型,那么你可以尝试使用GAN来对图像进行去噪处理并对其进行增强。我可以从信号处理领域提供更激进的例子:有很多与手机加速度计数据相关的数据集,描述了不同的人的活动。但是,如果你想在腕带上应用受过手机数据训练的模型,该怎么办?GAN可以尝试帮助你还原不同类型的动作。一般来说,生成模型不是从噪声中进行生成,而是一些预定义的先验模型可以帮助你进行域迁移,协方差转换以及与数据差异相关的其他问题。

6.数据处理

我们在前一段谈到了风格转移。我不喜欢的是它的映射函数适用于整个输入,如果我只想换一些照片的鼻子怎么办?或改变汽车的颜色?或者在不完全改变的情况下替换演讲中的某些单词?如果我们想要这样做,那么我们的对象就需用一些有限的因子来描述,例如,脸是眼睛,鼻子,头发,嘴唇等的组合,这些因素有它们自己的属性如颜色、大小等。如果我们可以将带有照片的像素映射到某些...我们可以调整这些因素并使鼻子更大或更小?有一些数学概念允许它:多样性假设,对我们来说好消息是,自动编码器可能实现。

7.对抗训练(Adversarial training)

你可能不同意我添加关于机器学习模型攻击的文字,但它对生成模型(对抗性攻击算法确实非常简单)和对抗性算法影响很大。也许你熟悉对抗性例子的概念:模型输入中的小扰动(甚至可能是图像中的一个像素)导致完全错误的性能。其中一个最基本的方法叫做对抗性训练:基本上是利用对抗性的例子来构建更准确的模型。

如果不深入细节,这意味着我们需要双人游戏:对抗模型需要最大化其影响力,并且存在需要最小化其损失的分类模型。看起来很像GAN,但出于不同的目的:使模型对对抗性攻击更稳定,并通过某种智能数据增强和正规化提高其性能。

小贴士

在本文中,我们已经介绍了几个例子,说明GAN和其他一些生成模型如何用于生成漂亮的图像,旋律或短文本。当然,他们的主要长期目标是生成以正确情况为条件的真实世界对象,但今天我们可以利用他们的分布建模和学习有用的表示来改进我们当前的AI、保护我们的数据、发现异常或适应更多现实世界的案例。我希望你会发现它们很有用,并将适用于你的项目。


阿里云双十一1折拼团活动:满6人,就是最低折扣了!
【满6人】1核2G云服务器99.5元一年298.5元三年 2核4G云服务器545元一年 1227元三年
【满6人】1核1G MySQL数据库 119.5元一年
【满6人】3000条国内短信包 60元每6月
参团地址:http://click.aliyun.com/m/1000020293/


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/520666.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

端口占用8080

1. winr键输入cmd进入命令行:执行以下命令: netstat -ano 2. 找到8080端口对应的pid 3. 打开任务管理器:找到对应的pid,右击结束任务即可

华为人到底几点钟下班?

戳蓝字“CSDN云计算”关注我们哦!作者 | 程序猿责编 | 阿秃转自 | 鲜枣课堂近日,在职场论坛上有这样一个帖子:华为员工晒出7天的上班打卡记录。该员工晒出自己在 9 月份 23 号到 29 号的打卡记录。其中每天 9 点 30 之前打卡&am…

手把手教你数据不足时如何做深度学习NLP

作为数据科学家,你最重要的技能之一应该是为你的问题选择正确的建模技术和算法。几个月前,我试图解决文本分类问题,即分类哪些新闻文章与我的客户相关。 我只有几千个标记的例子,所以我开始使用简单的经典机器学习建模方法&#…

怎样判断一个网站是不是前后端分离的?

1.页面右击选择【检查】或者打开谷歌开发者模式 2.选择【NetWork】,重新刷新页面 3. 选择XHR 全称(xmlhttprequest),后,下面会有地址列表;查看页面的数据是从页面渲染的数据还是通过后端api接口获取的 4.左侧点击第一个链接&…

五年,时间告诉我只有自己强大才是真的强大!

曾经以为,阿里可能只是自己经过的一个小小驿站。 却没想到,一来就是五年。 当我们问起那些来了五年的阿里人:过去的这五年里,最“值得”的是什么? 他们这样说—— 回忆起和主管一起坐摩托车去拜访客户的兴奋&#x…

AI:为你写诗,为你做不可能的事

戳蓝字“CSDN云计算”关注我们哦! 最近,一档全程高能的神仙节目,高调地杀入了我们的视野:没错,就是撒贝宁主持,董卿、康辉等央视名嘴作为评审嘉宾,同时集齐央视“三大名嘴”同台的央视《主持人大…

工程师如何“神还原”用户问题?闲鱼回放技术揭秘

我们透过系统底层来捕获ui事件流和业务数据的流动,并利用捕获到的这些数据通过事件回放机制来复现线上的问题。本文先介绍录制和回放的整体框架,接着介绍里面涉及到的3个关键技术点,也是这里最复杂的技术(模拟触摸事件&#xff0c…

英特尔推出世界最大 FPGA 芯片;任正非表示华为尚未直接和美国公司商谈5G技术授权;OpenTitan开源……...

戳蓝字“CSDN云计算”关注我们哦! 嗨,大家好,重磅君带来的【云重磅】特别栏目,如期而至,每周五第一时间为大家带来重磅新闻。把握技术风向标,了解行业应用与实践,就交给我重磅君吧!重…

前端传递json,后端应该怎样接收呢?

Content-Type: application/json#后端接收方式 RestController RequestMapping("/user") Slf4j public class UserController {/*** param userForm*/PostMapping("/register")public ResponseVo register(RequestBody UserForm userForm) {log.info("…

网络数据隐私保护,阿里工程师怎么做?

个人数据挖掘和个人隐私保护,并非鱼与熊掌,可视分析的技术手段能够帮助我们保护个人隐私数据,避免后续的数据挖掘暴露隐私的同时,平衡数据质量发生的变化,减少对后续数据挖掘的影响。针对网络数据中的隐私保护问题&…

刷爆了!这份被程序员疯传的Python神作牛在哪?

随着AI的兴起,Python彻底火了。除了谷歌爬虫、Google广告等项目在大量使用Python开发。包括豆瓣、知乎在内的很多互联网公司都将 Python 作为了主要编程语言开发。对于程序员来说,Python应用前景广,市场需求大,随之而来的是薪资非…

阿里云李刚:下一代低延时的直播CDN

在上周落幕帷幕的多媒体领域技术盛会——LiveVideoStackCon音视频技术大会上,阿里云的高级技术专家李刚进行了《下一代低延时的直播CDN》技术分享。主讲人李刚,多年关注在CDN这个领域,早期主要研究和cache服务器缓存以及流媒体相关的技术, 专…

教你用一条SQL搞定跨数据库查询难题

导读 日前,某电商用户由于业务发展迅猛,访问量极速增长,导致数据库容量及性能遭遇瓶颈。为降低数据库大小,提升性能,用户决定对架构进行垂直拆分。根据不同的表来进行拆分,对应用程序的影响也更小&#xf…

漫画:什么是公有云、私有云和混合云?

戳蓝字“CSDN云计算”关注我们哦!作者 | 漫话编程 责编 | 阿秃为了方便大家理解,我们尽量用通俗的语言和举例子的方式讲解,并且文中还配备了漫画供大家参考学习。随着最近几年的云计算技术的主键发展和普及,越来越多的企业通过采用…

PTS + ARMS打造性能和应用诊断利器

服务端的性能测试,尤其是业务性能测试,是用来评估性能容量、诊断性能瓶颈和应用错误,或是验证高可用的能力,以此达到降低成本、提升用户体验的目的。但是,当需要有进一步的定位和刨析时,这类性能测试就会显…

Envoy源码分析之Dispatcher

Dispatcher 在Envoy的代码中Dispatcher是随处可见的,可以说在Envoy中有着举足轻重的地位,一个Dispatcher就是一个EventLoop,其承担了任务队列、网络事件处理、定时器、信号处理等核心功能。在Envoy threading model这篇文章所提到的EventLoo…

这项技术厉害了!让旅行者 2 号从星际空间发首批数据!

限时8.3折,立即购票:https://dwz.cn/z1jHouwE物联网作为信息系统向物理世界的延伸,极大地拓展了人类认知和控制物理世界的能力,被称为继计算机和互联网之后的世界信息产业的第三次浪潮,正在深刻地改变着人类的生存环境…

修改文件 华为交换机_华为交换机系统文件管理配置命令大全(二)

11、解压文件&#xff08;unzip&#xff09;<Huawei>dirDirectory of flash:/Idx Attr Size(Byte) Date Time FileName0 drw- - Aug 07 2015 13:51:14 src1 drw- - Apr 02 2016 11:29:41 pmdata2 drw- - Apr 02 2016 11:29:52 dhcp3 -rw- 28 Apr 02 2016 11:29:53 privat…

从阿里云数据库入选Gartner谈数据库的演化

根据全球权威的IT咨询公司Gartner的最新研究报告&#xff0c;在2018年度数据库系统的魔力象限中&#xff0c;阿里云数据库被列入“远见者”象限&#xff0c;这是国产数据库首次进入Gartner魔力象限。Gartner的魔力四象限&#xff0c;描述了数据库厂商的产品能力和市场规模。四个…

申请美国计算机科学,美国计算机科学的申请特点

计算机科学官方定义&#xff1a;计算机科学是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。它通常被形容为对那些创造、描述以及转换信息的算法处理的系统研究&#xff0c;计算机科学专业的申请特点如下&#xff1a;申请难度中等学校…