10 个实用功能告诉你,谷歌云(Google Cloud)相对亚马逊云(AWS)有哪些优势?...

来源 | itnext

编译 | 武明利

责编 | Carol

出品 | CSDN云计算(ID:CSDNcloud)

有很多文章将谷歌云提供商(GCP)与亚马逊云服务(AWS)进行比较,但这篇文章并不想要做比较。

作者主要是一个AWS用户,但最近一直使用GCP工作,尽管AWS更加成熟并拥有许多服务,但GCP有一些服务和一些优势,使其成为某些用例的更好提供者。而本文则简要总结了GCP相对于AWS的优势。

本文将重点介绍GCP优于AWS的地方以及作者认为GCP可能是更好选择的用例。

网络协议栈

网络协议栈是GCP的一大亮点,它使用Google的全球超低延迟内部网络。GCP使用全球代号为Andromeda的软件定义网络(SDN),可提供令人难以置信的性能,特别是针对低延迟的微服务和大数据处理。

GCP中的虚拟私有云(VPC)是全球性的,如果你选择的话,你可以在不同的区域中定义它们,整个网络都是软件定义的,具有很大的灵活性。你的负载均衡器在边缘位置工作,提供全球负载均衡和自动扩展。

借助GCP,你可以非常轻松地使用Geo分布式数据构建一个全球基础架构。这对于其他云提供商来说非常困难。

开发者经验

虽然我主要是AWS用户,但作为开发者,我必须承认我更喜欢使用GCP工作。它的cli很棒,它是一致的、快速的且容易使用。你也可以轻松访问alpha和beta特性。

GCP的控制台体验可能是所有云提供商中最好的,尤其是拥有云脚本(cloud shell),你可以从浏览器直接获得终端,并从浏览器安全地连接到虚拟机(VM),而无需设置任何SSH密钥,这非常完美!

GCP VM的启动速度非常快,比AWS快得多,这使得横向扩展特别敏感。它的定价很公道,你可以自定义所需的CPU和RAM数量,这样非常方便! GCP几乎允许所有实例类型连接GPU。这可以将任何标准或自定义实例转换为支持机器学习(ML)的VM。

借助Cloud Identity,GCP的身份管理工作得非常出色。它与G suite集成并提供单点登录(SSO),因此无需使用其他云提供商非常流行的解决方案(如OneLogin)。

最后,大多数服务都提供模拟器。这非常好,我可以立刻使用笔记本电脑测试所有应用程序,而无需使用任何第三方工具或复杂的集成

Pub/Sub(发布/订阅)

AWS提供了许多用于消息传递的服务,例如SQS,SNS,Kinesis,Event Bridge,Kafka等,而GCP仅提供Pub/Sub。说实话,你不需要其他任何东西,它是一项非常好且便宜的服务,可用于从数据流到微服务的各种用例。这是一项全球服务,可以扩展来处理大量的数据,而且速度非常快。

Pub/Sub非常容易集成和使用,它支持许多客户端和协议。它还为消费者提供两种模式:push和pull。最重要的是它非常划算,也完全没有服务器!

数据库

Google特别关注数据,他们非常擅长管理和扩展大数据,为每个用例提供灵活的解决方案。

尤其是他们提供的3种解决方案,我认为这是其他竞争对手没有的,而这些就是大数据解决方案。公司与其他云提供商一起正在建立数据湖,将大量数据存储到S3之类的廉价存储中来提高成本效益。他们在电子医疗记录(EMR)上使用像Spark这样的传统框架来处理它并对其进行优化,以便能够使用Parquet这样的格式从S3查询它。

维护数据湖非常复杂,特别是在数据经常发生变化的情况下。这可能会变得难以管理,最终成本会升高。如果我们可以将大数据存储在可扩展且经济划算的数据库中,那不是很好吗?这样会容易得多。GCP有一些不错的选择。虽然对象存储一直很便宜,但只要这3个解决方案不太庞大,它们就可以用于大数据。

Big Table(大表)

Big Table是一个完全托管的NoSQL数据库。可以将其与AWS DynamoDB进行比较,但它们有所不同。DynamoDB是一种NoSQL,可以扩展以处理数百万个事务,但每个项只能存储400Kb,其目标不是处理大数据。

另一方面,Big Table是千万亿字节级的数据库。它提供一致的10ms以下的延迟,因此非常快速可靠,也易于扩展并且经济划算。

Big Query(大查询)

BigQuery是GCP的黄金产品,由于它是一个很大的产品,因此很难解释它到底是什么。它定义为:一个无服务器、高度可扩展且经济划算的云数据仓库,旨在帮助你快速做出明智的决策,以便你轻松地进行业务转型。

最接近的AWS产品是Redshift和Redshift Spectrum。BigQuery是无服务器的,并且可以扩展来查询大量数据,它内置了ML和BI模型,可用于各种用例。我喜欢BigQuery的地方是你可以用它来做任何事情,可以存储日志或帐单信息。它具有比BigTable高的延迟,但也更便宜一些。

作为BI的数据仓库,Redshift可能更好,但对人工智能(AI)和机器学习(ML)来说, BigQuery更好。

Spanner

Cloud Spanner是针对区域和全球应用程序数据的完全托管,可扩展的关系数据库服务。我认为其他云提供商中没有与之类似的数据库。这是庞大的,但也是完全相关的。它使你可以大规模使用常规SQL并具有强大的一致性事务。

你还记得SQL与NoSQL之间的权衡吗?现在它们已经不存在了,你可以使用SQL并在全球范围内进行扩展,但是价格并不便宜。

ML/AI

Google拥有最好的机器学习平台。它为所有类型的用户和用例提供了工具。从用于深度学习的低级虚拟机到高级API,服务数量巨大。

借助SageMaker,AWS正在慢慢迎头追赶,并且已经非常接近GCP,但是GCP仍然提供了更新的和准确的工具集。它提供了专门用于深度学习,与Kubernetes和机器学习训练等更好集成的虚拟机。

Kubernetes

关于Kubernetes,没有什么可说的,与其他云提供商相比,GCP具有优势。 GCP比其他云提供商更便宜、更新、更快、更易于使用。由于其灵活性和价格优势,GKE可能是世界上最好的云服务。它允许轻松地从本地迁移到云。它安全并且易于设置,提供出色的自动缩放,很容易监视。

最好的是GCP赋予了Kubernetes权力,并提供了一个友好的生态系统来运行几乎所有工作负载,从微服务或数据流到大数据管道。Kubernetes生态系统非常庞大,所有这些工具都已在GCP中进行了验证和测试。

AWS更加专注于无服务器,而GCP专注于Kubernetes,这两种技术都很棒。

成本

一般来说,GCP比其他云提供商便宜,因为它始终取决于你使用的服务以及使用方式。如果你使用Kubernetes,就成本效率而言,GCP无疑是赢家

在计算和存储成本方面,它也是显而易见的赢家。GCP提供了一种更好的方法来补贴长期使用,并且秒杀抢购的虚拟机则非常便宜。

在秒杀抢购虚拟机上运行的GKE群集的价格很难与之匹敌。

用例

AWS仍然是最好的云提供商,它具有比GCP更成熟的产品和更多的服务。它还拥有庞大的用户群和更好的支持。如果你有疑问,请使用AWS。亚马逊在追赶GCP 机器学习功能方面做得非常出色,还降低了某些服务的成本。但我仍然认为,对于以下某些用例,GCP可能是更好的选择:

  1. 机器学习,特别是深度学习或使用Kubernetes时。

  2. 归功于Pub/Sub和DataFlow大数据流处理。得益于网络协议栈,GCP的延迟降低了,管道运行速度更快且成本更低。对于批处理,两个提供者都同样出色。

  3. 分布式实时系统。如果你的微服务要求极低的延迟,则Google SDN + pub/sub是一个很好的解决方案。例如Go微服务+ gRPC运行得非常快。另外,Akka非常适合GCP。

  4. Kubernetes。这是GCP的主要优势,如果你想要以低成本高效运行便携基础架构,GKE是一个很好的工具。对于无服务器,AWS可能是一个更好的选择。

  5. 全球大数据数据库。如果你不想使用数据湖,而又想大规模存储大数据,那么Spanner或Big Table是令人惊叹的数据库,它们可以使你的生活更加轻松。

简而言之,如果你想在Kubernetes上运行快速低延迟的微服务或你有大量数据,请考虑使用GCP。

最重要的资产,是开发者们

强烈建议你在两个平台上试用服务并开发小型概念验证模型(POC),以便在两个平台上获得经验。两家提供商都有免费套餐。不要只考虑来自咨询人士的报告,你需要自己做判断,并尝试这两种平台。

我个人喜欢Kubernetes,它使你的代码可跨平台移植,从而使它们之间的切换变得容易得多。

如果你是AWS用户,请先阅读平台概述,然后检查最佳实践。之后,请阅读适用于AWS专业人士的指南。

与AWS相比,GCP还非常易于保护和管理。最后看看GCP必须提供的所有服务,它正在迅速赶上。

我们正处于软件开发的关键时刻,因此无论你选择哪种平台,都将是一个很好的选择。只要记住最重要的资产是什么,并对其进行投资,这个资产就是:开发者们!

想知道Python如何支援抗“疫”吗?2月15日(全天)Python线上峰会免费学!6场精华分享,用代码“抗”疫!

详细日程请见下方海报

两种报名方式:

1.点击“立即报名”--结算时使用优惠码“pythonday”,价格变为“0"元--提交订单,免费参与

2.点击“立即报名”--付款“19元”报名--会议官网公示姓名--为疫区捐款表心意

福利扫描添加小编微信,备注“姓名+公司职位”,入驻【CSDN博客】,加入【云计算学习交流群】,和志同道合的朋友们共同打卡学习!
推荐阅读:我是如何用6个月,从0编程经验变成数据科学家的?
基于角色的访问控制(RBAC)
病毒详解及批处理病毒制作:自启动、修改密码、定时关机、蓝屏、进程关闭
蚂蚁金服AAAI收录论文曝光,动态网络剪枝方法、无语预训练的网络剪枝技术有重大突破
疫情时期的程序员爱情,看完我酸了!
孟岩:疫情带来的暂停,会让区块链与数字经济迎来更大反弹|算力大学视频公开课全文
真香,朕在看了!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/519270.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

mybatis-plus大批量数据插入缓慢问题

文章目录问题排查结果建议问题 最近项目用的mybatis-plus做的映射,有个批处理文件内容的需求,在使用mybatis-plus的批处理方法saveBatch时发现速度特别慢,测试从1000到10000到80000条基本上是线性增加,80000条时差不多要90秒。 …

世界冠军之路:菜鸟车辆路径规划求解引擎研发历程

阿里妹导读:车辆路径规划问题(Vehicle Routing Problem, VRP)是物流领域最经典的优化问题之一,具有极大的学术研究意义和实际应用价值。菜鸟网络高级算法专家胡浩源带领仓配智能化算法团队经过两年的研发,逐步沉淀出了…

原来,阿里工程师才是隐藏的“修图高手”!

阿里妹导读:在现实世界中,信息通常以不同的模态同时出现。这里提到的模态主要指信息的来源或者形式。例如在淘宝场景中,每个商品通常包含标题、商品短视频、主图、附图、各种商品属性(类目,价格,销量&#…

分布式数据集训营,从入门到精通,从理论到实践,你不可错过的精品课程!...

责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)随着微服务、云化架构的兴起,分布式数据库开始在越来越多的场景得到应用,从外围系统到中台业务,再到核心交易业务,分布式数据库成为企业基础架构转…

mybatis批量插入10万条数据的优化过程

在使用mybatis插入大量数据的时候,为了提高效率,放弃循环插入,改为批量插入,mapper如下: package com.lcy.service.mapper;import com.lcy.service.pojo.TestVO; import org.apache.ibatis.annotations.Insert;import java.util.List;/*** 功能描述:** author liuc…

java spring注解维护,从一次工程启动失败谈谈 spring 注解

原标题:从一次工程启动失败谈谈 spring 注解檀宝权Java 后端开发工程师,负责度假 App 后端和广告后端开发维护工作,熟悉 Tomcat,Spring,Mybatis,会点 Python,Lua。一、背景线上环境升级成 JDK8后…

探索Java日志的奥秘:底层日志系统-log4j2

前言 log4j2是apache在log4j的基础上,参考logback架构实现的一套新的日志系统(我感觉是apache害怕logback了)。 log4j2的官方文档上写着一些它的优点: 在拥有全部logback特性的情况下,还修复了一些隐藏问题API 分离&…

大地震!某大厂“硬核”抢人,放话:只要AI人才,高中毕业都行!

特斯拉创始人马斯克,在2019年曾许下很多承诺,其中一个就是:2019年底实现完全的自动驾驶。虽然这个承诺又成了flag,但是不妨碍他今年继续为这个承诺努力。这不,就在上周一,马斯克之间在twitter上放话了&…

Dart编译技术在服务端的探索和应用

前言 最近闲鱼技术团队在FlutterDart的多端一体化的基础上,实现了FaaS研发模式。Dart吸取了其它高级语言设计的精华,例如Smalltalk的Image技术、JVM的HotSpot和Dart编译技术又师出同门。由Dart实现的语言容器,它可以在启动速度、运行性能有不…

Python + ElasticSearch:有了这个超级武器,你也可以报名参加诗词大会了! | 博文精选...

来源 | CSDN 博客作者 | 天元浪子责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)意犹未尽的诗词大会正月十六,中国诗词大会第五季落下帷幕。从2016年2月12日第一季于开播,迄今恰好四周年。在这个舞台上,时年…

Node.js 应用故障排查手册 —— 大纲与常规问题指标简介

楔子 你是否想要尝试进行 Node.js 应用开发但是又总听人说它不安全、稳定性差,想在公司推广扩张大前端的能力范畴和影响又说服不了技术领导。 JavaScript 发展到今天,早已脱离原本浏览器的战场,借助于 Node.js 的诞生将其触角伸到了服务端、P…

蚂蚁金服CTO程立:做工程要有“拧螺丝”的精神

“一台机器可能有无数颗螺丝,需要一个一个地拧,而且需要一圈一圈地拧,才能让系统间严丝合缝,顺利工作。代码的世界里,一个项目到底成功与否,也是取决于几个模型的关键特殊设置,就像拧螺丝一样。…

linux 环境安装DBI和DBD_03

文章目录一、软件下载二、安装DBI2.1. DBI下载2.2. 解压2.3. 安装依赖2.4. 编译2.5. 执行测试2.6. 安装2.6. 修改权限三、安装DBD-ORACLE组件3.1. DBI下载3.2. 修改权限3.3. 切换用户3.4. 解压3.5. 进入目录3.6. 初始化环境变量3.6. 查看配置的环境变量是否配置3.7. 刷新配置文…

像数据科学家一样思考:12步指南(上)

介绍 目前,数据科学家正在受到很多关注,因此,有关数据科学的书籍正在激增。我看过很多关于数据科学的书籍,在我看来他们中的大多数更关注工具和技术,而不是数据科学中细微问题的解决。直到我遇到Brian Godsey的“像数…

Mybatis-plus 大数据量数据流式查询通用接口

文章目录一、案例需求二、使用案例:2.1. 自定义查询接口2.2. 逻辑处理类2.3. 调用案例2.4. 具体逻辑处理案例三、企业案例3.1. key名称获取3.2. 逻辑类测试3.3.最后一个批次处理方案四、 通用SQL预编译处理4.1. 业务场景4.2. xml形式4.3. 注解形式五、企业案例5.1. …

基于MaxCompute的数仓数据质量管理

声明 本文中介绍的非功能性规范均为建议性规范,产品功能无强制,仅供指导。 参考文献 《大数据之路——阿里巴巴大数据实践》——阿里巴巴数据技术及产品部 著。 背景及目的 数据对一个企业来说已经是一项重要的资产,既然是资产&#xff…

IP应用加速 – DCDN迈入全栈新篇章

4月11日,第七届"亚太内容分发大会"暨CDN峰会国际论坛中,阿里云资深技术专家姚伟斌发布了DCDN子产品IP应用加速(IPA)。IPA是基于阿里云CDN本身的资源优化,对传输层(TCP&UDP)协议进…

十年磨一剑,王坚自研的MaxCompute如何解决世界级算力难题

大数据时代,随着企业数据规模的急剧增长,传统软件已无法承载,这也推动了大数据技术的发展,Google、AWS、微软等硅谷巨头纷纷投入大数据技术的研发;而在国内,王坚也在十年前带领阿里云团队研发MaxCompute&am…

matlab和robotstudio,MATLAB与Robotstudio建立socket通信(初探)

前记:听一首《不想病》,歌词唱开头:做什么都不对,说什么都浪费,想什么我都可悲....;感觉就是不一样,好歌!哎,,,回到正题。好多事要去做,还得挤时间…

贾扬清:我对人工智能方向的一点浅见

阿里妹导读:作为 AI 大神,贾扬清让人印象深刻的可能是他写的AI框架Caffe ,那已经是六年前的事了。经过多年的沉淀,成为“阿里新人”的他,对人工智能又有何看法?最近,贾扬清在阿里内部分享了他的…