贾扬清:我对人工智能方向的一点浅见

阿里妹导读:作为 AI 大神,贾扬清让人印象深刻的可能是他写的AI框架Caffe ,那已经是六年前的事了。经过多年的沉淀,成为“阿里新人”的他,对人工智能又有何看法?最近,贾扬清在阿里内部分享了他的思考与洞察,欢迎共同探讨、交流。

贾扬清,浙江上虞人,毕业于清华大学自动化系,在加州大学 Berkeley 分校获得计算机博士学位,目前担任阿里计算平台掌门人。

最近几年深度学习的流行,大家一般认为是从2012年 AlexNet 在图像识别领域的成功作为一个里程碑。AlexNet 提升了整个业界对机器学习的接受程度:以前很多机器学习算法都处在“差不多能做 demo ”的程度,但是 AlexNet 的效果跨过了很多应用的门槛,造成了应用领域井喷式的兴趣。

当然,任何事情都不是一蹴而就的,在2012年以前,很多成功的因素已经开始逐渐显现:2009年的 ImageNet 数据库奠定了大量标注数据的基础;2010年开始,IDSIA 的 Dan Ciresan 首次用 GPGPU 进行物体识别;2011年,北京的 ICDAR 大会上,神经网络在中文离线识别上大放异彩。就算是 AlexNet 中用到的ReLU层,早在2001年神经科学的文献中就有提及过。所以,一定程度上说,神经网络的成功也是一个水到渠成的过程。2012年以后的事情,大家可以读到很多,这里就不再赘述。

成功与局限

在看待神经网络成功的同时,我们也要进一步深挖其背后的理论背景和工程背景,为什么神经网络和深度学习在几十年前失败,但是现在却成功了?它成功的原因是什么?而它的局限又在什么地方?我们这里只能片面地说几个重点:

  • 成功的原因,一点是大数据,一点是高性能计算。
  • 局限的原因,一点是结构化的理解,一点是小数据上的有效学习算法。

大量的数据,比如说移动互联网的兴起,以及 AWS 这样低成本获得标注数据的平台,使机器学习算法得以打破数据的限制;由于 GPGPU 等高性能运算的兴起,又使得我们可以在可以控制的时间内(以天为单位甚至更短)进行 exaflop 级别的计算,从而使得训练复杂网络变得可能。要注意的是,高性能计算并不仅限于 GPU ,在 CPU 上的大量向量化计算,分布式计算中的 MPI 抽象,这些都和60年代就开始兴起的 HPC 领域的研究成果密不可分。

但是,我们也要看到深度学习的局限性。今天,很多深度学习的算法还是在感知这个层面上形成了突破,可以从语音、图像,这些非结构化的数据中进行识别的工作。在面对更加结构化的问题的时候,简单地套用深度学习算法可能并不能达到很好的效果。有的同学可能会问为什么 AlphaGo 和 Starcraft 这样的算法可以成功, 一方面,深度学习解决了感知的问题,另一方面,我们也要看到还有很多传统的非深度学习算法,比如说 Q-learning 和其他增强学习的算法,一起支撑起了整个系统。而且,在数据量非常小的时候,深度学习的复杂网络往往无法取得很好的效果,但是很多领域,特别是类似医疗这样的领域,数据是非常难获得的,这可能是接下去的一个很有意义的科研方向。

接下去,深度学习或者更广泛地说,AI 这个方向会怎么走?我个人的感觉,虽然大家前几年一直关注AI框架,但是近年来框架的同质化说明了它不再是一个需要花大精力解决的问题,TensorFlow 这样的框架在工业界的广泛应用,以及各种框架利用 Python 在建模领域的优秀表现,已经可以帮助我们解决很多以前需要自己编程实现的问题,因此,作为 AI 工程师,我们应该跳出框架的桎梏,往更广泛的领域寻找价值。

挑战

往上走,我们会遇到产品和科研的很多新挑战,比如说:

  • 传统的深度学习应用,比如说语音、图像等等,应该如何输出产品和价值?比如说,计算机视觉现在基本还是停留在安防这个层面上,如何深入到医疗、传统工业,甚至社会关爱(如何帮助盲人看见这个世界?)这些领域,是不仅需要技术,还需要产品的思考的。
  • 除了语音和图像之外,如何解决更多问题。在阿里和很多互联网企业中有一个“沉默的大多数”的应用,就是推荐系统:它常常占据了超过80%甚至90%的机器学习算力,如何将深度学习和传统推荐系统进一步整合,如何寻找新的模型,如何对搜索和推荐的效果建模,这些可能没有像语音和图像那么为人所知,却是公司不可缺少的技能。
  • 即使在科研方向,我们的挑战也刚刚开始:Berkeley 的教授 Jitendra Malik 曾经说,“我们以前是手工调算法,现在是手工调网络架构,如果囿于这种模式,那人工智能无法进步”。如何走出手工调参的老路,用智能提升智能,是个非常有意思的问题。最开始的 AutoML 系统依然停留在用大量算力暴力搜索模型结构的层面上,但是现在各种更高效的 AutoML 技术开始产生,这是值得关注的。

机会

往下走,我们会发现传统的系统、体系结构等知识,计算机软件工程的实践,会给 AI 带来很多新的机会,比如说:

  • 传统的 AI 框架都是手写高性能代码,但是模型如此多变,新的硬件平台层出不穷,我们应该如何进一步提升软件效率?我们已经看到有通过编译器技术和传统的人工智能搜索方法来反过来优化AI框架,比如 Google 的 XLA 和华盛顿大学的 TVM,这些项目虽然处于早期,但是已经展现出它们的潜力。
  • 平台如何提升整合能力。在开源领域,大家的做法是一个人,一台机器,几个 GPU ,训练比较学院派的模型。但是在大规模应用中,我们的数据量非常大,模型非常复杂,集群还会出现各种调度的挑战(能不能一下子就要求256个 GPU ?计算资源是否可以弹性调度?),这些对于我们自己的机器学习平台,以及云上向客户提供的服务,都提出了非常多的挑战。
  • 如何进行软硬件的协同设计。在深度学习的计算模式开始逐渐固化的时候(比如说 CNN ),新硬件和特殊硬件(比如 ASIC )的优势就开始体现出来了。如何实现软硬件的协同设计,防止“硬件出来了,不知道怎么写程序”或者“模型已经变了,硬件一出来就过时了”这样的问题,会是将来几年中很大的方向。

人工智能是一个日新月异的领域,我们有一个笑话说,2012年的科研成果,现在说起来都已经是上古时代的故事了。快速的迭代带来的大量机遇和挑战是非常令人兴奋的,无论是有经验的研究者还是新学 AI 的工程师,在当今云化,智能化的年代,如果能快速学习并刷新算法和工程的各种挑战,就可以通过算法创新引领并且赋能社会各个领域。这方面,人工智能领域开源开放的各种代码,科研文章和平台给大家创造了比以前更容易的入门门槛,机遇都掌握在我们自己手中。


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/519241.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Node.js 应用故障排查手册 —— 类死循环导致进程阻塞

类死循环导致进程阻塞 楔子 在实践篇一中我们看到了两个表象都是和 CPU 相关的生产问题,它们基本也是我们在线上可能遇到的这一类问题的典型案例,而实际上这两个案例也存在一个共同点:我们可以通过 Node.js 性能平台 导出进程对应的 CPU Pro…

如何使用5个Python库管理大数据?

来源 | medium编译 | 武明利责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)如今,Python真是无处不在。尽管许多看门人争辩说,如果他们不使用比Python更难的语言编写代码,那么一个人是否真是软件开发人员&…

如何把创建ECS(CreateInstance)作为触发器来触发函数计算

问题描述 函数计算虽然不支持直接集成到ECS的管控事件上,但是函数计算本身是支持日志服务作为触发器的。即可以配置日志服务中logstore里的增强日志作为触发器来触发函数计算服务中的函数,同时可以传递project 和 logstore的name以及beginCursor/endCur…

ORACLE添加字段、删除字段

文章目录1. 删除表2. 创建表3. 添加字段4. 删除指定字段5. 修改指定字段长度1. 删除表 DROP TABLE SYS_JOB;2. 创建表 -- CREATE TABLE CREATE TABLE SYS_JOB (JOB_ID NUMBER(30) NOT NULL,JOB_NAME VARCHAR2(30) NOT NULL ); ALTER TABLE SYS_JOB ADD CONSTRA…

像数据科学家一样思考:12步指南(中)

像数据科学家一样思考:12步指南(上)《像数据科学家一样思考》 7-工程产品 下一步是建立统计软件。如果统计是分析和从数据中得出结论的框架,那么软件就是将这个框架付诸行动的工具。数据科学家必须为任何项目做出许多软件选择。如…

2020云计算,是四强争霸还是赢家通吃?

来源 | 架构师技术联盟责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)近日,谷歌母公司Alphabet首次公布了谷歌云计算业务的数据,这一举动将云计算行业重新推到了聚光灯下。众所周知,全球云市场竞争激烈&…

加载程序中数据库账号密码加密策略wallet_04

文章目录1. 切换到oracle用户2. 创建wallet目录3. 创建wallet 账户4. 查看创建的wallet5. 创建wallet目录6. 查看证书7. 把证书拷贝到客户端8. 在客户端的sqlnet.ora里添加9. 客户端的tnsnames.ora10. 测试登陆11. oracle环境变量oracle服务端创建wallet 1. 切换到oracle用户 …

利用丁香园数据生成疫情分布地图(R语言)| 博文精选

来源 | CSDN 博客作者 | 万里写入胸怀间责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)疫情牵动大家,除了做好分内工作,管好自己不给社会添乱,也就是只能持续关注疫情了。现在各大门户平台都上线了疫情实时地…

php连接数据库性能测试,无需安装配置,多操作系统支持数据库及性能测试

iBoxDB是一个NoSQL数据库, 有SQLite的特性,但拥有更强大的Replication功能,支持更多的数据类型,自动完成ORMSQLite是全球知名度Top 10的数据库之一, 在文章 中对 SQLite 与 MySQL进行了一个事务中1万次插入测试, 测试的结果是"sqlite3用时仅0.4s,mysql用时2.2s"iBoxD…

ORACLE 添加和查看注释

文章目录一、表二、字段一、表 #1.给表加注释 COMMENT ON TABLE SYS_JOB IS 任务调度表;#2.查看表的COMMENT SELECT * FROM USER_TAB_COMMENTS WHERE TABLE_NAMETABLENAME; 例如: SELECT * FROM USER_TAB_COMMENTS WHERE TABLE_NAMESYS_JOB;二、字段 # 1.给字段加…

一次开发、多端分发,阿里巴巴发布AliOS车载小程序

4月16日上海国际车展首日,阿里巴巴小程序有了新动态:正在研发基于AliOS的车载小程序。 AliOS展出车载小程序、AI HUD、AI驾驶舱等最新技术 作为阿里巴巴小程序在车载场景的重要延伸,AliOS车载小程序和支付宝、高德等小程序一样,将…

基于TableStore的海量气象格点数据解决方案实战

前言 气象数据是一类典型的大数据,具有数据量大、时效性高、数据种类丰富等特点。气象数据中大量的数据是时空数据,记录了时间和空间范围内各个点的各个物理量的观测量或者模拟量,每天产生的数据量常在几十TB到上百TB的规模,且在…

腾讯会议扩容背后:100万核计算资源全由自研服务器星星海支撑

疫情期间,远程会议及协同办公需求暴增。从1月29日开始到2月6日,腾讯会议每天都在进行资源扩容,日均扩容云主机接近1.5万台,8天总共扩容超过10万台云主机,共涉及超百万核的计算资源投入。 值得一提的是,腾讯…

实时计算无线数据分析

本文为您介绍实时计算在无线数据分析中的应用。阿里云实时计算可以为无线App的数据分析场景实时化助力,帮助您做到实时化分析手机AP的各项指标,包括App版本分布情况、Crash检测和等。 阿里云移动数据分析 (Mobile Analytics,下面简称MAN) 是…

对话阿里云Alex Chen:下一代存储应如何面对云转型?

数字经济"乘云而上"。 十年前,阿里云开始自主研发云计算操作系统飞天之路,开启了中国云时代; 十年后,阿里云在中国市场份额超过2-8名总和,培育了整个中国云计算市场,数字经济在云上蓬勃发展。 …

写给大数据从业者:数据科学的5个陷阱与缺陷

来源 | AI 前线作者 | 陈炬,责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)导读: 这篇分享主要总结了数据从业人员在实践中可能遇到的陷阱与缺陷。跟其他新起的行业一样,数据科学从业人员需要不停的去考虑现…

阿里云数据库自研产品亮相国际顶级会议ICDE 推动云原生数据库成为行业标准

4月9日,澳门当地时间下午4:00-5:30,阿里云在ICDE 2019举办了主题为“云时代的数据库”的专场分享研讨会。 本次专场研讨会由阿里巴巴集团副总裁、高级研究员,阿里云智能数据库产品事业部负责人李飞飞(花名:飞刀&#…

大神如何一招完美解决Hadoop集群无法正常关闭的问题!| 博文精选

来源 | CSDN 博客作者 | Alice菌,责编 | Carol出品 | CSDN云计算(ID:CSDNcloud)相信对于大部分的大数据初学者来说,一定遇见过Hadoop集群无法正常关闭的情况。有时候当我们更改了Hadoop内组件的配置文件后,…

现代IM系统中的消息系统架构 - 架构篇

前言 IM全称是『Instant Messaging』,中文名是即时通讯。在这个高度信息化的移动互联网时代,生活中IM类产品已经成为必备品,比较有名的如钉钉、微信、QQ等以IM为核心功能的产品。当然目前微信已经成长为一个生态型产品,但其核心功…