优酷背后的大数据秘密

在本文中优酷数据中台的数据技术专家门德亮分享了优酷从Hadoop迁移到阿里云MaxCompute后对业务及平台的价值。

本文内容根据演讲视频以及PPT整理而成。

大家好,我是门德亮,现在在优酷数据中台做数据相关的事情。很荣幸,我正好见证了优酷从没有MaxCompute到有的这样一个历程,因为刚刚好我就是入职优酷差不多5年的时间,我们正好是在快到5年的时候,去做了从Hadoop到MaxCompute的这样一个升级。这个是2016年5月到2019年现在的5月优酷的发展历程,上面是计算资源,下面是储存资源。大家可以看到整个用户数,还有表的数据,实际上是在呈一个指数式增长的。但是在2017年5月,当优酷完成了整个Hadoop迁移MaxCompute后,优酷的计算消耗,还有储存的消耗实际上是呈下降趋势的,整个迁移得到了一个非常大的收益。

下面说一下优酷的业务特点。

第一个特点从大数据平台整个的用户复杂度上面,不止是数据的同学和技术的同学在使用,还会包括一些BI同学,测试同学,甚至产品运营都可能去使用这个大数据的平台。

第二个特点就是业务复杂,优酷是一个视频网站,它有非常复杂的业务场景,从日志分类上,除了像页面浏览,还会有一些播放相关的数据、性能相关的数据。从整个的业务模式上,有直播、有会员、有广告、有大屏等这样一些非常不一样的场景。

第三个特点,就是数据量是非常巨大的,一天的日志量会达到千亿级别,这是一个非常旁大的数据量,而且会做非常复杂的计算。

第四个是比较有意思的,不管是小公司、大公司,对成本的意识是非常高的。优酷也是有非常严格的预算,包括在阿里集团内是有非常严格的预算系统的,但是我们也经常会去做一些重要的战役,像双十一战役,像我们暑期的世界杯战役,还有春节也会搞各种战役。这样的话,其实对计算资源的弹性要求是非常高的。

基于上面的优酷的业务特点,我整理了MaxCompute可以完美的支持我们业务的几个特点。

第一个,简单易用。
第二个,完善的生态。
第三个,性能非常强悍。
第四个,资源使用非常弹性。

第一个特点,简单易用。MaxCompute有一个非常完整的链路,不管是从数据开发,还是数据运维,包括数据集成,数据质量的管控,还有整个数据地图,数据安全。当年优酷从Hadoop迁到MaxCompute之后,我们最大的体会是自己不用半夜经常起来去维护集群了,不用去跑任务了,写一个任务,别人之前提一个需求过来,我可能要给他排几周,而现在我可以告诉他,我给你马上跑一下,就可以出来了。包括之前像分析师BI还要登录客户端,写脚本,自己写调度,经常会说我的数今天为什么没出来?包括高层看的数,可能要到12点钟才能出来。而现在基本上所有重要的数据都会在7点钟产出,包括一些基本的业务需求,其实分析师或者产品,他们自己都可以实现了,不需要所有需求都提到数据这边。

第二个特点,完整的生态。优酷在2017年之前是完全基于Hadoop的生态,迁到MaxCompute之后,是基于阿里云提供的Serverless大数据服务的生态。大家可以在开源上看到的组件,在整个的MaxCompute上都是有的,而且比开源的要更好用、更简单。从架构图上可以看到,我们中间是MaxCompute,左侧依赖的Mysql、Hbase、ES、Redis这些都是由同步中心去做一个双向的同步。右侧会有资源管理、资源监控、数据监控,包括数据资产,还有一些数据规范。我们下层的数据输入,包括一些集团的采集工具,再往上边,有提供给开发人员用的DataWorks,包括一些命令行的工具;有提供给BI人员用的QuickBI及数据服务。

第三个特点,强悍的性能,MaxCompute支撑了优酷EB级的数据存储,千亿级的数据样本分析,包括千亿级的数据报表,10W级实例的并发、任务。这些在之前维护Hadoop的时候,是想都不敢想的。

第四个特点,资源使用的弹性。我们在2016年迁移之前,其实优酷的Hadoop集群规模已经达到了一千多台,这个当时还是一个比较大的规模。当时我们遇到了很多问题,包括像NameNode 这种内存的问题,机房没有办法再扩容的问题,当时是非常痛苦的,包括一些运维管理上面的问题。我们不断的去问运维要资源,运维告诉说,说你们已经花了多少多少资源,花了多少多少钱。我们面临的问题是计算资源如何按需使用,夜里的时候作业很多,到了下午之后,我的整个集群都空下来了,没有人用,造成了浪费。其实MaxCompute完美的解决了这个问题。

第一个,它是按用量计费的,不是说给你多少台机器,然后就收你多少钱的,真的是你用了多少资源收多少钱的,这个在成本上来说,比自己去维护集群,可能是一个砍半(降50%)这样的收益。

第二个,实际上MaxCompue计算资源是可以分时的,比如说生产队列,凌晨的时候会调高一些,保证报表能够尽快出来。到白天时候,让开发的计算资源高一些,可以让分析师、开发去临时跑一些数据,会更顺畅一些。

第三个,MaxCompute快速的扩容能力,比如说突然有一个比较强的业务需求,发现数据跑不动了,计算资源不够,所有的队列都堵死了,这个时候其实可以直接跟运维说一声,帮忙一键扩容,他两秒钟敲一个命令就搞定了。这样的话,所有的资源可以迅速的消化下去。

上面是优酷为什么采用MaxCompute,下面是在优酷的业务场景下,我们一些典型的方案、应用。这张图实际上是优酷,包括可能现在阿里集团内部一些非常典型的技术架构图。中间可以看到,MaxCompute在中间核心的位置,左侧主要是一个输入,右侧是一个输出的趋向,绿色的线是一个实时的链路,包括现在我们从整个的数据源上,比如DB也好或者服务器的本地日志Log也好,我们通过TT&Datahub存储到MaxCompute上面做分析。当然现在非常火的Flink实时计算,其实是作为一个实时处理的链路。

包括DB的同步,除了实时的链路,DB也会去通过按天/按小时,把数据同步到MaxCompute,数据计算结果也可以同步到Hbase、Mysql这种DB上面。再通过统一的服务层对应用提供服务。下面这个是机器学习Pai做的一些算法训练,再把训练的结果通过OSS传到一个算法的应用上面去。

这张图可能也是业界比较流行的一个数仓分层的图,因为我们这边是数据中台,所有的数据都是统一从ods层cdm层,然后ads层,去一层一层的往上去做精细,再到最上面,通过接口服务、文件服务、SQL服务,去提供多样化的服务。再往上面,提供对内的一些数据产品,对高管、对小二,可能还有一些对外的,比如说像优酷的播放数,包括热度这些对应用的数据。

这张图其实就是我们从Hadoop迁到MaxCompute平台上以来,两个非常经典的案例。我们通过数据中台对不同场景的用户打通,来去赋能到两个不同的场景,提升业务价值。

第二个,可能是内部的,我们通过优酷,还有集团内部的一些BU去做换量,我们通过统一的标签去做样本放大,把优酷的量导给其它的BU,把其它BU的量导给优酷,这样去达到一个共赢的效果。

这张图大部分互联网公司不太会涉及到,就是关于反作弊的问题。这个是我们在MaxCompute做的一个反作弊的架构,通过原始的数据去提取它的特征,然后再通过算法模型,包括机器学习、深度学习、图模型去支持流量反作弊、渠道反作弊等等。再通过业务场景上反作弊的监控工具,把监控到的作弊信息去打一个黑白样本,再把这个黑白样本跟特征一起来不断的迭代优化算法模型。同时针对算法模型,做一个模型的评价,不断来完善反作弊体系。

最后一点,其实还是跟成本相关,在日常使用中,一定是有小白用户或者一些新来的用户去错误的使用或者不在乎的使用一些资源,比如经常会有一些实习生或者是非技术的同学,如分析师,一个SQL消费比较高,这个其实是非常浪费资源,而且可能他一个任务,让其他所有人的任务都在这儿等着排队,实际上我们会去对整个的资源做一个治理。

从节点的粒度上,通过大数据来治理大数据,我们可以算出哪些表产出来之后,多少天没有被读取的,包括它的访问跨度可能没有那么大的,我们会去做下线或者去做治理,有一些业务场景可能并不是非常的重要或者它的时间要求没有那么高,比如一些算法训练,可以去做一些错峰的调度,保证水位不要太高。从MaxCompute任务的角度,可以算出哪些任务有数据倾斜、哪些数据可能会有相似计算,哪些任务需要去做MapJoin,哪些任务需要去做一些裁剪,然后来节省它的IO。还有哪些任务会去做暴力扫描,扫一个月、扫一年的数据,哪些数据可能会有这样一个数据膨胀,比如说它做了CUBE之类的这种复杂计算,一些算法模型的迭代;我们通过数据计算出来的这些迹象,去反推用户,来去提高它的这样一个数据的质量分,来去达到我们降低整个计算资源的目的。

在计算平台的角度,我们也持续的在使用MaxCompute推出的一些非常高级的用法,比如我们这边的HBO、Hash Cluster、Aliorc,HBO就是我们基于一个历史的优化,这样避免了用户不知道怎么调参,我可能为了自己任务快一点,就调一个特别大的参数,这样的话,对集成的资源是非常浪费的。通过这个功能,用户就不用去调参数,集群自动调好,用户就写好自己业务逻辑就好了。

第二块,可能就是最近两年推出的Hash Cluster,当时在使用Hadoop的时候经常会出现,两个大表Join的时候计算不出来,这个Hash Cluster其实是一个优化的利器。大表跟小表Join,可以做一些分发,做一些优化。大表跟大表就涉及到一个排序的问题。这个Hash Cluster,实际上就是提前把数据排好,中间省掉很多计算环节,来达到效率提升的目的。

第三个,Aliorc,在一些固定的场景上面,可以稳定的提升20%的计算效率。

第四个,Session。对一些比较小的数据,直接就放到SSD或缓存里面,一个节点下游有100个叶子场景,是非常友好的,因为低延迟秒出结果。同时,优酷也在使用Lightning解决计算加速,这个是在一个计算架构方案上的优化,它是一个MPP的架构。

最后一页是存储的优化,因为像一些关键的原始数据或者是需要审计的数据是不能删的,永久不能删的。实际上就会造成我们数据存储的趋势是一直往上不减的,计算会在某一个时间点达到一个平衡。当前用这么多的计算资源,再往后,其实应该也不会再大涨了,比如说旧的业务逻辑下掉了,会换新的业务逻辑,这样会保持在一个相对平稳的波动上面。但是储存,因为它有一些历史的数据是永远不能删的,可能会出现一直在增长,而且是指数级的。所以我们也会持续关注存储的情况,我们主要有四个手段。

第一个,还是通过大数据来治大数据,去看哪些表它的访问不够或者它的访问跨度不够。就是对一些生命周期的优化,来去控制它的增速。包括下面的,刚才提到的Aliorc,实际上是做压缩的,我们会去做一些大字段的拆分,来提高压缩的比例。

OK,这个是优酷在MaxCompute中的一些应用场景,感谢大家的聆听。


原文链接
本文为云栖社区原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/518734.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

从提取层、处理层、基础结构入手,带你了解Spark和Kafka!

作者 | Jaskaran S. Puri译者 | 火火酱 责编 | 徐威龙封图| CSDN 下载于视觉中国电子商务市场中典型的一天是这样的:每分钟发生1万个事件流,并且要选择合适的工具对其进行处理。本文将帮助你重新创建一个场景,其中有大量的数据流入&#xff0…

Java-switch选择结构

基本类型 public class SwitchDemo01 {public static void main(String[] args) {// case 穿透char grade B;switch (grade) {case A:System.out.println("优秀");break;case B:System.out.println("良好");break;case C:System.out.println("及格&…

高性能服务器架构思路【不仅是思路】

在服务器端程序开发领域,性能问题一直是备受关注的重点。业界有大量的框架、组件、类库都是以性能为卖点而广为人知。然而,服务器端程序在性能问题上应该有何种基本思路,这个却很少被这些项目的文档提及。本文正式希望介绍服务器端解决性能问…

v-if v-show区别(面试题)

v-if、v-show顾名思义就是用来判断视图层展示效果的,在Vue中文社区说明文档的介绍有: 相同点: v-if与v-show都可以动态控制dom元素显示隐藏 不同点: 1.v-if :可以根据表达式的值在DOM中生成或移除一个元素。 v-show:可…

专访世界顶级游戏背后的男人

‍作者 | 华为云和TA的朋友们封图| CSDN 下载于视觉中国如今,对于网易不鸣工作室CEO王希来说,团队的代表作《战意》已经获得阶段性成功。但不为人知的是,从下定决心要做世界顶级游戏,到这款作品萌生想法,再到正式公测&…

Java-While循环

public class WhileDemo01 {public static void main(String[] args) {// 输出 1 ~ 100int i 0;while (i<100) {i;System.out.println(i);}// 计算 1234...100&#xff1f;int j 0;int sum 0;while (j<100){sum sum j;j;}System.out.println(sum); // 5050} }https…

如何将深度学习训练速度提升一百倍?PAISoar 来了

阿里妹导读&#xff1a;得力于数据规模增长、神经网络结构的演进和计算能力的增强&#xff0c;深度学习的图像处理、语音识别等领域取得了飞速发展。随着训练数据规模和模型复杂度的不断增大&#xff0c;如何充分利用分布式集群的计算资源加快训练速度&#xff0c;提升业务支持…

[Err] 1055 - Expression #1 of ORDER BY clause is not in GROUP BY clause 的问题 MySQL

show variables like "sql_mode"; set sql_mode; set sql_modeNO_ENGINE_SUBSTITUTION,STRICT_TRANS_TABLES;

破解面试难题8个角度带你解读SQL面试技巧!

作者 | Xinran Waibel译者 | 天道酬勤 责编 | 徐威龙封图| CSDN 下载于视觉中国SQL是用于数据分析和数据处理的最重要的编程语言之一&#xff0c;因此SQL问题始终是与数据科学相关工作&#xff08;例如数据分析师、数据科学家和数据工程师&#xff09;面试过程中的一部分。 SQ…

一文读懂架构整洁之道(附知识脉络图)

程序的世界飞速发展&#xff0c;今天所掌握的技能可能明年就过时了&#xff0c;但有一些东西是历久弥新&#xff0c;永远不变的&#xff0c;掌握了这些&#xff0c;在程序的海洋里就不会迷路&#xff0c;架构思想就是这样一种东西。 本文是《架构整洁之道》的读书笔记&#xf…

python获取视频时长方法

1.使用subprocess和re import re import subprocess video r"work/train/video/a8b96f016a28d8f3836f7cbb7734ecde.mp4" import subprocessdef get_length(filename):result subprocess.run(["ffprobe", "-v", "error", "-sho…

阿里敏捷教练全面解析淘宝直播敏捷实践之路

背景介绍 阿里很少提敏捷转型或DevOps&#xff0c;阿里是强业务驱动的&#xff0c;不管用什么办法&#xff0c;一定要达到业务目标。 我来自敏捷教练团队&#xff0c;我们的职责是帮助团队拿结果。这里的团队不限于研发团队&#xff0c;我现在支持的团队包括销售团队和产品运…

int默认值为0,Integer默认值为null

前提概要 Java为每个原始类型提供了封装类&#xff0c;Integer是java为int提供的封装类。 int的默认值为0&#xff0c;而Integer的默认值为null&#xff0c;即Integer可以区分出未赋值和值为0的区别&#xff0c;int则无法表达出未赋值的情况。 代码示例 public class…

GitHub 接连封杀开源项目惹众怒,CEO 亲自道歉!

作者 | 唐小引头图 | CSDN 下载自东方 IC出品 | CSDN&#xff08;ID&#xff1a;CSDNnews&#xff09;王坚博士曾经做过这样一个非常形象的比喻&#xff0c;他将做 App 比作是在别人的花园里弄盆栽&#xff0c;「种点花草是没有问题的」&#xff0c;不过「别人叫你的产品下架你…

一键托管,阿里云全链路追踪服务正式商用:成本仅自建1/5或更少

随着互联网架构的扩张&#xff0c;分布式系统变得日趋复杂&#xff0c;越来越多的组件开始走向分布式化&#xff0c;如微服务、消息收发、分布式数据库、分布式缓存、分布式对象存储、跨域调用&#xff0c;这些组件共同构成了繁杂的分布式网络。 在一次800多人的开发者调研中&…

基于Docker的Mysql主从复制搭建_mysql5.7.x

文章目录为什么基于Docker搭建&#xff1f;一、拉取镜像创建容器1. 拉取mysql:5.7镜像2. 创建master容器3. 创建slave容器4. 查看正在运行的容器5. 此时可以使用Navicat等工具测试连接mysql二、搭建Master(主)服务器2.1. 进入到Master容器内部2.2. my.cnf编辑2.2. 重启mysql服务…

医疗保健、零售、金融、制造业……一文带你看懂大数据对工业领域的影响!...

作者 | Zubair Hassan译者 | 风车云马 责编 | 徐威龙封图| CSDN 下载于视觉中国随着大数据技术的兴起&#xff0c;工业领域在很大程度上发生了变化。智能手机和其他通讯方式的使用迅速增加&#xff0c;使得每天都能收集大量数据。以下是大数据对工业领域的影响。如今&#xff0…

mysql主从复制排错

使用start slave开启主从复制过程后&#xff0c;如果SlaveIORunning一直是Connecting&#xff0c;则说明主从复制一直处于连接状态&#xff0c;这种情况一般是下面几种原因造成的&#xff0c;我们可以根据 Last_IO_Error提示予以排除。 可能的原因说明网络不通查看master和sla…

揭秘!一个高准确率的Flutter埋点框架如何设计

背景 用户行为埋点是用来记录用户在操作时的一系列行为&#xff0c;也是业务做判断的核心数据依据&#xff0c;如果缺失或者不准确将会给业务带来不可恢复的损失。闲鱼将业务代码从Native迁移到Flutter上过程中&#xff0c;发现原先Native体系上的埋点方案无法应用在Flutter体…

如何运行没有Root权限的Docker?干货来了!

作者 | Vaibhav Raizada译者 | 天道酬勤责编 | 徐威龙封图| CSDN 下载于视觉中国在本文中&#xff0c;我们讨论了如何在没有root权限的情况下运行Docker&#xff0c;以便更好地管理容器中的安全性。Docker作为Root用户Docker以root用户身份运行其容器。但是你的工作负载真的需要…