嘘,这是手淘双11 GMV 暴涨的秘密

阿里妹导读:信息流作为手淘的一大流量入口,对手淘的浏览效率转化和流量分发起到至关重要的作用。在探索如何给用户推荐其喜欢的商品这条路上,我们首次将端计算大规模应用在手淘客户端,通过端侧丰富的用户特征数据和触发点,利用机器学习和深度神经网络,在端侧持续感知用户意图,抓住用户转瞬即逝的兴趣点,并给予用户及时的结果反馈。通过大半年的不断改进,手淘信息流端上智能推荐在9月中旬全量,并在双十一当天对信息流的点击量和GMV都带来了大幅的提升。下文将给大家分享我们在探索过程中发现的问题,对其的思考和解决方案。

背景

现状与解决方案

手淘上以列表推荐形式为主的业务场景有不少,以手淘信息流为例,进入猜你喜欢场景的用户,兴趣点常常是不明确的,用户浏览时往往没有明确的商品需求,而是在逛的过程中逐渐去发现想买的商品。而推荐系统在用户逛到买的过程中,往往会下发并呈现不同类型商品让用户从中挑选,推荐系统这个过程中会去捕捉用户的兴趣变化,从而推荐出更符合用户兴趣的商品。然而推荐系统能不能做到用户兴趣变化时立刻给出响应呢?推荐系统以往的做法都是通过客户端请求后触发云端商品排序,然后将排序好的商品下发给用户,端侧再依次做商品呈现。这样存在下面两个问题:

  • 云端推荐系统对终端用户推荐内容调整机会少,往往都在分页请求时,而简单请求并不能灵活做内容的增删改。
  • 云端推荐系统不能及时获取到用户当前时刻的偏好意图,快速给出反馈。

我们总结发现,目前推荐系统的弊端是,用户偏好的变化与推荐系统对用户感知和对内容的调整时机并不能匹配,会出现推荐的内容并非用户当前时刻想要的,用户浏览和点击意愿都会下降。那么怎样能够让推荐系统及时感知到用户偏好并及时的给出用户想要的内容呢?

我们先透过现象看本质,以上问题的本质在于推荐系统和用户交互过程中的实时性差,以及决策系统可调整性差。实时性差体现在两个方面,推荐系统对终端用户的感知实时性差以及对用户的干预实时性差。而决策系统可调整性差,体现在决策系统对用户内容的调整时机依赖端侧的固定规则请求,可调整的内容局限于当前次下发的内容。如果我们能够解决实时性问题,推荐系统能够实时感知用户偏好,并在任何时机实时调整用户所见内容,推荐的内容可以更符合用户当前的偏好;如果我们能够解决决策系统可调整性差问题,推荐系统可以决定合适的时机去调整用户内容,可以决定用更优的方式去调整具体的内容。那么解决的方案是什么呢?

我们在手淘信息流中引入机器学习和深度神经网络模型,结合端侧用户特征,在端侧持续感知用户意图,实时决策并实时反馈结果给用户,这样解决了实时性差以及决策系统可调整性差的问题。我们把这个解决方案称之为端智能。

端智能带来的改变

端智能的本质是“端”+“智能”。首先“智能”不是一个新鲜的东西,“智能”不管是在云端或终端,解决的问题是通过机器学习数据的内在机制并推理出最终结论;“端”解决的问题是将”智能“工程化并落地到具体的应用场景,“端”有机的整合端侧数据以及云端下发内容,决定何时触发“智能”做决策,最终决定怎样给用户以反馈。

端智能带来的改变,则是让端上具备了“独立思考”的能力,这让部分决策和计算不再依赖于云端,端侧可以更实时、更有策略的给出结果。说到实时性,5G时代的到来,其低时延特性极大的降低了端和云的交互时间,但这并不影响我们利用端智能实现更低成本的决策和快速响应,反而对于端智能来说,好处是能和云端结合的更紧密。另外由于在端侧能够秒级感知用户意图做出决策,产品和用户贴的更近了,这催生了更多实时性的玩法,产品将不再局限于要到固定的时机如分页请求让云端去给到新的内容反馈,而是思考,当用户表达出来特定的用户意图时,产品应该如何提供与意图相匹配的内容。

端智能与传统差异比较

尽管端智能带来了很多好的改变,但这里依然需要强调一点,并不是说有了端智能就不再需要云智能,怎样做到云&端协同智能才是未来。

端智能的优势在于:

  • 端侧有着丰富的用户特征和触点,有着更多的机会和条件去做决策
  • 实时性高,在端侧处理可节省数据的网络传输时间,节省的时间可用于更快的反馈结果
  • 节省资源,在端侧处理,利用端侧算力和存储空间,可以节省大量的云端计算和存储资源
  • 隐私性好,从产生数据到消费数据都在端侧完成,避免传输到云端引起隐私泄露风险

端智能的不足在于:

  • 设备资源有限,端侧的算力、电力、存储是有限的,不能做大规模高强度的持续计算。
  • 算法规模小,端侧算力小,而且单用户的数据,在算法上并不能做到最优
  • 用户数据有限,端侧数据并不适合长期大量存储,端侧可用数据有限

云智能的优势在于:

  • 大数据,云端可以通过长期大量的来自不同人群的数据进行计算
  • 设备资源充足,云计算的算力、电力、存储都可以根据需求进行配置
  • 算法规模大,可以通过足够的大规模模型,计算出最优解

云智能不足在于:

  • 响应速度慢,受传输带宽影响,不能稳定提供较高的响应速度
  • 用户感知弱,端侧产生的数据同步到云端,数据量限制和传输时间的约束都会削弱云端对用户的感知

从以上云智能和端智能的对比可以看出,端智能适合于依赖端侧用户触点的小规模低时延的计算,而云智能更适合中长期数据大规模计算。同时,端智能往往需要云端提供的长期特征及内容,而云智能也往往需要端上的特征和丰富的触发点,两者优势互补,才能发挥出更好的效果。

端智能基础设施建设

高楼起于平地,打造端智能这幢摩天大楼需要很多基础设施,剥除各种各样边角料和锦上添花的东西后,我们认为构成支撑起端智能体系的骨架组成部分主要有数据、端计算、端计算引擎、端智能决策框架、算法研发平台。其中,端侧数据 、端计算、端计算引擎这三块的作用是实时感知用户,计算出贴合用户的结果;端智能决策框架是触达用户的通道,通过端上实时智能决策衔接用户意图和端计算,最后通过一定的干预手段展现到用户眼前;算法研发平台是开发过程主要接触的平台,能有效提升研发效率。通过一个简单的示意图也许能更好的理解这五大块:

数据-BehaviX

无论计算是发生在云端还是终端,数据始终是执行所有计算的基本要素之一,端计算的本质也是计算,数据当然也是他的要素之一。在淘宝或者其他阿里系App里我们已经有很多数据沉淀,这些数据包括但不限于商品、商品特征、用户特征等。这些数据同样可以作为端计算的输入来源,但如果只有这些,端计算和云计算相比在数据上似乎没有什么明显优势了,所以我们需要回过头看下端计算作为端智能的重要部分,他的在数据上的核心优势是什么?端计算运行在端上,天然能获取端上的数据,而且是实时获取。我们希望这部分数据是和已有数据是互补的、对端计算是有价值的,端计算的目的之一是千人千面,端上丰富的用户特征,能体现当前用户的实时意图。所以我们在构建了端侧用户特征数据中心BehaviX。

BehaviX作为整个端智能的数据基础,提供给算法特征数据作为模型数据输入源,支持了特征实时同步云端,让云端能够秒级感知到端侧用户特征,提供了算法基于端侧用户特征数据做意图分析的能力。

端智能决策框架-BehaviR

从用户角度来看,用户感知到的不是一堆数据和计算而是能够被感知到的结果,因此,即使计算出来的结果无比贴合用户意图,如果无法及时触达用户也是无用功。触达用户方式多种多样,我们需要基于实际场景放开手大胆探索,合理的产品设计会让用户觉得是在和一个“智能”的App交流,反之,不合理的产品设计会打扰用户、对用户造成困扰。从技术角度来说,我们要设计和做的其实是一条触达通道,通过感知用户触点,我们能根据运营规则配置或者本地模型决策出此时要给用户什么类型的反馈,然后通过下面要讲述的端计算能力计算出贴合用户的结果并展示给用户,以此将端计算和用户连接在一起。

端智能决策框架能简化业务方接入端智能流程,帮助业务方真正做到实时感知、及时干预。

端计算-EdgeRec

端计算简单理解起来可以认为是跑在端上的一段逻辑,这段逻辑可以是一个预置的Native任务,也可以是一个脚本,当然,在最终我们希望他是一个算法模型。算法模型是目前做到千人千面的有效手段之一,其他优势不再累述了,详见下面的友情链接。

回到这里的主角EdgeRec-边缘计算算法,他在在端上实时建模了用户的异构特征序列,为端上决策提供通用的用户状态表达。通过多任务学习,共享通用的用户状态表达,在端上建模多种决策模型。另外,边缘计算算法SDK也提供端上深度学习算法开发的通用解决方案,如:端上深度学习模型库、端上模型拆分部署、端上模型版本控制、端上样本生成等。

端计算引擎-Walle&MNN

端计算引擎是端智能体系中重要的一环,是算法模型的基础环境。无论是iOS还是Android目前都提供了一套环境,但两端差异性比较大,限制也比较多。构建一套端计算引擎的成本是非常高的,但长远来看统一两端引擎、抹平差异是有非常有必要的。Walle和MNN作为当前我们端计算引擎很好地做到了这一点。

Walle是端上整体的Runtime,他为算法的Python脚本、深度模型以及Jarvis的EFC、ESC等特征样本计算库提供运行环境,另外也为BehaviX管理的基础数据提供存储服务。

MNN 是一个轻量级的深度学习端侧推理引擎,核心解决深度神经网络模型在端侧推理运行问题,涵盖深度神经网络模型的优化、转换和推理,其前身为 AliNN。

算法研发平台:Jarvis

算法模型的研发并不是简单地在本地IDE写一份代码那么简单,我们通常需要理论调研、算法开发、模型训练、参数调优、线上验证等等步骤,本地环境是远远不够的,所以算法研发平台的存在能帮助算法同学更高效、更专注地进行研发工作。另外,端智能要出结果,一定是多团队通力合作的结果,多团队合作仅靠口头沟通是远远不够的,我们需要一套合理的流程去简化和规范各项工作,因此,在算法研发平台的基础之上我们仍旧需要一个一站式平台。

Jarvis提供一站式的开发、调试、验证、AB测试、发布、监控平台,与算法同学共建一起打造了端上的特征计算、样本计算等基础库。

整体流程图

我们构建了端智能的五个基础设施,通过端上调度系统,将整个端智能技术体系串联起来,总体来说分为用户触达和用户感知部分。用户触达部分包括端上调度和端上决策,端上调度提供和业务的直接对接,端上决策由端上调度系统在合适的时候拉起本地算法计算;用户感知部分则对用户特征进行标准化端上用户特征,提供端侧计算的数据输入。

数据效果

从年初信息流端智能立项以来,我们经过最开始的小流量实验,效果逐渐优化,大半年的不断探索试错,信息流端智能于9月中旬在首页猜你喜欢场景全量。双十一当天也取得了不错的业务效果,对商品推荐的准确度提升,信息流GMV和点击量都大幅提升。其实这只是信息流在端智能的开始,相信后面更深入的优化探索,我们将会取到更好的效果。

总结

从我们以往的经验来看,端侧做的更多的是将云端内容以具体的形式呈现给用户。当端侧也具备了感知用户意图并智能做出决策时,端侧的能力就不再局限于“呈现”,端侧也可以”思考“。业务可以利用端侧”思考“能力,将以往在云端解决起来比较困难的问题放到端上去解决,如云端决策实时性问题、大数据量上报云端分析的资源消耗问题;可以结合端侧本身的特性,如传感器、相机、UI呈现等,去思考如何去整合用户特征、数据、端侧算法去大胆尝试找到新的突破口。


原文链接
本文为阿里云原创内容,未经允许不得转载。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/517086.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vuex从安装到使用的教程

vuex的安装 npm install vuex --save或cnpm install vuex --save main.js引入vuex import Vue from vue import Vuex from vuex import store from ./vuex/storeVue.use(Vuex) vuex的目录结构和store.js的代码 store.js的代码(异步和同步的代码均留下两个方法&am…

未来,仅凭几个前端工程师,就能 hold 住一家企业吗?

阿里妹导读:微前端架构旨在解决单体应用在一个相对长的时间跨度下,由于参与的人员、团队的增加,从一个普通应用演变成一个巨石应用(Frontend Monolith),随之而来的应用不可维护问题。这类问题在企业级 Web 应用中尤为常见。今天&a…

yarn : 无法加载文件 C:\Users\Administrator\AppData\Roaming\npm\yarn.ps1,因为在此系统上禁止运行脚本

文章目录1. 现象2. 授权安全策略3. 重新执行命令1. 现象 2. 授权安全策略 若要在本地计算机上运行您编写的未签名脚本和来自其他用户的签名脚本,请使用以下命令将计算机上的 执行策略更改为 RemoteSigned 执行: set-ExecutionPolicy RemoteSigned查看执…

央视315曝光SDK事件,应用开发者如何避坑?

7月16日晚,央视315晚会拉开大幕,再次敲响了消费领域的警钟。据央视报道,上海市消费者权益保护委员会委托第三方对市场上的App进行检测,发现某些第三方开发的SDK包存在违规收集用户个人信息的情况。日前,工信部已要求严…

VS Code 切换大小写

默认是空的,我设置的快捷键是 shift altd 转换为大写 shift altx 转换为小写

携程实时智能检测平台建设实践

本次演讲将为大家介绍携程实时智能异常检测平台——Prophet。到目前为止,Prophet基本覆盖了携程所有业务线,监控指标的数量达到10K,覆盖了携程所有订单、支付等重要的业务指标。Prophet将时间序列的数据作为数据输入,以监控平台作…

VS Code 设置好看的字体:Operator Mono

文章目录一、字体资源地址1. 链接2. 资源下载二、效果图2.1. JS 代码效果2.2. CSS 文件效果2.3. HTML 文件效果三、安装字体3.1. 字体列表3.3. 安装方式3.3. VSCode 配置一、字体资源地址 1. 链接 FiraCode 和 Operator Mono 字体下载地址 2. 资源下载 Git下载 git clone …

钟南山团队携手腾讯研发新冠重症AI预测 成果登上Nature子刊

钟南山院士团队与腾讯AI Lab日前披露了利用AI预测COVID-19患者病情发展至危重概率的研究成果,可分别预测5天、10天和30天内病情危重的概率,有助合理地为病人进行早期分诊。这项研究已在2020年7月15日发布于国际顶级期刊《Nature》子刊《Nature Communica…

CentOs搭建svn

安装SVN yum install -y subversion检查是否安装成功 svnserve --version创建版本库 我们先创建/var/svn这么目录 mkdir /var/svn cd /var/svn创建版本库 svnadmin create /var/svn/project后边的project就是我们项目的版本库 cd project ls 会看到自动生成的版本库文件…

互联网全域降维攻击战略概述

前言: 在互联网维度体系概念被提出之后,社会上对于降维的理解向不同的方向发展,如很多人认为降维呈现的是有高难度业务实施能力的企业向低难度领域业务进行渗透和发展的方式,还有的认为降维就是互联网行业对于传统行业的业务冲击…

当达摩院大牛学会抠图,这一切都不受控制了……

在外界人眼中,达摩院人才济济,大多是奇人异士,做着神秘且高端的研究,有如扫地僧一般的存在,但是如果有一天,当神秘专家不再神秘,你发现他们也开始玩抠图,且这一切都朝着不受控制的方…

腾讯安全携手华夏银行“论道”金融风控,传递在线反欺诈干货建议

前不久,Gartner发布了《在线反欺诈市场指南》,对全球聚焦在线反欺诈全链路监测与防护的厂商进行评估,给遭遇欺诈的企业提供了应对指南和选择建议。其中腾讯云成为中国唯一入选服务商,得到了Gartner官方的推荐。在报告中&#xff0…

Flutter嵌套深?扩展函数了解一下

背景 嵌套层级深的问题让众多刚接触Flutter的同学感到困扰,它不仅是看起来让人感到不适,还非常影响编码体验。 大佬们会告诉你应该拆分自己的嵌套代码(自定义widget或者抽取build方法)来减少嵌套层级。这确实是个行之有效的方法&#xff0c…

VS Code 中的文件添加图标的插件vscode-icons

文章目录1. 效果图2. 用法1. 效果图 2. 用法 一旦你安装了该插件你重启VS Code后会在右下角收到一个该插件的提示,这时你要点击Activate激活icons。 你也可以通过点击以下功能来激活它(VS Code中可能存在很多主题,想用哪个就激活哪个)。 Linux & W…

开发者说:如何使用插件降低上传文件部署服务的复杂度

“ 这里描述我们实际服务部署的时候频繁发生的两个常用场景。 第一个场景,我们“办公网环境”想要在“准生产环境”下部署,需要做如下工作: 打包、将文件上传到堡垒机上、scp将上传好的包裹传输到“准生产环境”的目标机器、ssh 目标机器、r…

打开通往新零售时代的大门,数据中台这把钥匙可行吗?

2016年“新零售”概念提出即被引爆,如今看来依然让人热血沸腾,因为这三个字,极有可能影响未来十年、二十年的商业格局。在新零售概念下,大数据技术可以在任何时间和地点无形地收集和沉淀客户的主要行为数据,直接掌握客…

Vue+mui实现图片的本地缓存

效果&#xff1a; const menu {state: {products: {},GLOBAL_CONFIG:GLOBAL_CONFIG[GLOBAL_CONFIG]},mutations: {get_product: function (state, products) {//商品列表state.products products;for(let i 0; i < state.products.length; i){if(state.products[i][image…

年度回顾 | 2019 年的 Apache Flink

2019 年即将落下帷幕&#xff0c;这一年对于 Apache Flink 来说是非常精彩的一年&#xff0c;里程碑式的一年。随着这一年在邮件列表发送了超过 1 万封邮件&#xff0c;JIRA 中超过 4 千个 tickets&#xff0c;以及 GitHub 上超过 3 千个 PR&#xff0c;Apache Flink 迎来了快速…

VS Code 报错Vetur can‘t find ‘tsconfig.json‘ or ‘jsconfig.json‘的解决方法

文章目录一、原因二、说明三、显式项目四、解决方法&#xff08;3选1&#xff09;4.1. 配置Vetur插件&#xff0c;忽略提示4.2.在项目根目录创建jsconfig.json文件4.3.在项目根目录创建vetur.config.js文件一、原因 Vetur 0.31.0版本新增了一个vetur.config.js的配置文件&…

IDE 插件新版本发布,总有一个功能帮到你——开发部署提速 8 倍

对于开发者而言&#xff0c;提高工作效率大概有 2 种主要方式&#xff0c;第一种方式就是加快自己的工作速度&#xff0c;争取在同一段时间内多码一些代码、多干一些活来实现多产&#xff1b;而聪明的开发者会选择第二种方式&#xff0c;就是通过插件&#xff0c;让一些重复性的…