在数据库中的静态表上做 OLAP 分析时,两表 join 是非常常见的操作。同理,在流式处理作业中,有时也需要在两条流上做 join 以获得更丰富的信息。Flink DataStream API 为用户提供了3个算子来实现双流 join,分别是:
- join()
- coGroup()
- intervalJoin()
本文举例说明它们的使用方法,顺便聊聊比较特殊的 interval join 的原理。
准备数据
从 Kafka 分别接入点击流和订单流,并转化为 POJO。
DataStream<String> clickSourceStream = env.addSource(new FlinkKafkaConsumer011<>("ods_analytics_access_log",new SimpleStringSchema(),kafkaProps).setStartFromLatest()); DataStream<String> orderSourceStream = env.addSource(new FlinkKafkaConsumer011<>("ods_ms_order_done",new SimpleStringSchema(),kafkaProps).setStartFromLatest());DataStream<AnalyticsAccessLogRecord> clickRecordStream = clickSourceStream.map(message -> JSON.parseObject(message, AnalyticsAccessLogRecord.class)); DataStream<OrderDoneLogRecord> orderRecordStream = orderSourceStream.map(message -> JSON.parseObject(message, OrderDoneLogRecord.class));
join()
join() 算子提供的语义为"Window join",即按照指定字段和(滚动/滑动/会话)窗口进行 inner join,支持处理时间和事件时间两种时间特征。以下示例以10秒滚动窗口,将两个流通过商品 ID 关联,取得订单流中的售价相关字段。
clickRecordStream.join(orderRecordStream).where(record -> record.getMerchandiseId()).equalTo(record -> record.getMerchandiseId()).window(TumblingProcessingTimeWindows.of(Time.seconds(10))).apply(new JoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {@Overridepublic String join(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord) throws Exception {return StringUtils.join(Arrays.asList(accessRecord.getMerchandiseId(),orderRecord.getPrice(),orderRecord.getCouponMoney(),orderRecord.getRebateAmount()), '\t');}}).print().setParallelism(1);
简单易用。
coGroup()
只有 inner join 肯定还不够,如何实现 left/right outer join 呢?答案就是利用 coGroup() 算子。它的调用方式类似于 join() 算子,也需要开窗,但是 CoGroupFunction 比 JoinFunction 更加灵活,可以按照用户指定的逻辑匹配左流和/或右流的数据并输出。
以下的例子就实现了点击流 left join 订单流的功能,是很朴素的 nested loop join 思想(二重循环)。
clickRecordStream.coGroup(orderRecordStream).where(record -> record.getMerchandiseId()).equalTo(record -> record.getMerchandiseId()).window(TumblingProcessingTimeWindows.of(Time.seconds(10))).apply(new CoGroupFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, Tuple2<String, Long>>() {@Overridepublic void coGroup(Iterable<AnalyticsAccessLogRecord> accessRecords, Iterable<OrderDoneLogRecord> orderRecords, Collector<Tuple2<String, Long>> collector) throws Exception {for (AnalyticsAccessLogRecord accessRecord : accessRecords) {boolean isMatched = false;for (OrderDoneLogRecord orderRecord : orderRecords) {// 右流中有对应的记录collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), orderRecord.getPrice()));isMatched = true;}if (!isMatched) {// 右流中没有对应的记录collector.collect(new Tuple2<>(accessRecord.getMerchandiseName(), null));}}}}).print().setParallelism(1);
intervalJoin()
join() 和 coGroup() 都是基于窗口做关联的。但是在某些情况下,两条流的数据步调未必一致。例如,订单流的数据有可能在点击流的购买动作发生之后很久才被写入,如果用窗口来圈定,很容易 join 不上。所以 Flink 又提供了"Interval join"的语义,按照指定字段以及右流相对左流偏移的时间区间进行关联,即:
right.timestamp ∈ [left.timestamp + lowerBound; left.timestamp + upperBound]
interval join 也是 inner join,虽然不需要开窗,但是需要用户指定偏移区间的上下界,并且只支持事件时间。
示例代码如下。注意在运行之前,需要分别在两个流上应用 assignTimestampsAndWatermarks() 方法获取事件时间戳和水印。
clickRecordStream.keyBy(record -> record.getMerchandiseId()).intervalJoin(orderRecordStream.keyBy(record -> record.getMerchandiseId())).between(Time.seconds(-30), Time.seconds(30)).process(new ProcessJoinFunction<AnalyticsAccessLogRecord, OrderDoneLogRecord, String>() {@Overridepublic void processElement(AnalyticsAccessLogRecord accessRecord, OrderDoneLogRecord orderRecord, Context context, Collector<String> collector) throws Exception {collector.collect(StringUtils.join(Arrays.asList(accessRecord.getMerchandiseId(),orderRecord.getPrice(),orderRecord.getCouponMoney(),orderRecord.getRebateAmount()), '\t'));}}).print().setParallelism(1);
由上可见,interval join 与 window join 不同,是两个 KeyedStream 之上的操作,并且需要调用 between() 方法指定偏移区间的上下界。如果想令上下界是开区间,可以调用 upperBoundExclusive()/lowerBoundExclusive() 方法。
interval join 的实现原理
以下是 KeyedStream.process(ProcessJoinFunction) 方法调用的重载方法的逻辑。
public <OUT> SingleOutputStreamOperator<OUT> process(ProcessJoinFunction<IN1, IN2, OUT> processJoinFunction,TypeInformation<OUT> outputType) {Preconditions.checkNotNull(processJoinFunction);Preconditions.checkNotNull(outputType);final ProcessJoinFunction<IN1, IN2, OUT> cleanedUdf = left.getExecutionEnvironment().clean(processJoinFunction);final IntervalJoinOperator<KEY, IN1, IN2, OUT> operator =new IntervalJoinOperator<>(lowerBound,upperBound,lowerBoundInclusive,upperBoundInclusive,left.getType().createSerializer(left.getExecutionConfig()),right.getType().createSerializer(right.getExecutionConfig()),cleanedUdf);return left.connect(right).keyBy(keySelector1, keySelector2).transform("Interval Join", outputType, operator); }
可见是先对两条流执行 connect() 和 keyBy() 操作,然后利用 IntervalJoinOperator 算子进行转换。在 IntervalJoinOperator 中,会利用两个 MapState 分别缓存左流和右流的数据。
private transient MapState<Long, List<BufferEntry<T1>>> leftBuffer; private transient MapState<Long, List<BufferEntry<T2>>> rightBuffer;@Override public void initializeState(StateInitializationContext context) throws Exception {super.initializeState(context);this.leftBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(LEFT_BUFFER,LongSerializer.INSTANCE,new ListSerializer<>(new BufferEntrySerializer<>(leftTypeSerializer))));this.rightBuffer = context.getKeyedStateStore().getMapState(new MapStateDescriptor<>(RIGHT_BUFFER,LongSerializer.INSTANCE,new ListSerializer<>(new BufferEntrySerializer<>(rightTypeSerializer)))); }
其中 Long 表示事件时间戳,List> 表示该时刻到来的数据记录。当左流和右流有数据到达时,会分别调用 processElement1() 和 processElement2() 方法,它们都调用了 processElement() 方法,代码如下。
@Override public void processElement1(StreamRecord<T1> record) throws Exception {processElement(record, leftBuffer, rightBuffer, lowerBound, upperBound, true); }@Override public void processElement2(StreamRecord<T2> record) throws Exception {processElement(record, rightBuffer, leftBuffer, -upperBound, -lowerBound, false); }@SuppressWarnings("unchecked") private <THIS, OTHER> void processElement(final StreamRecord<THIS> record,final MapState<Long, List<IntervalJoinOperator.BufferEntry<THIS>>> ourBuffer,final MapState<Long, List<IntervalJoinOperator.BufferEntry<OTHER>>> otherBuffer,final long relativeLowerBound,final long relativeUpperBound,final boolean isLeft) throws Exception {final THIS ourValue = record.getValue();final long ourTimestamp = record.getTimestamp();if (ourTimestamp == Long.MIN_VALUE) {throw new FlinkException("Long.MIN_VALUE timestamp: Elements used in " +"interval stream joins need to have timestamps meaningful timestamps.");}if (isLate(ourTimestamp)) {return;}addToBuffer(ourBuffer, ourValue, ourTimestamp);for (Map.Entry<Long, List<BufferEntry<OTHER>>> bucket: otherBuffer.entries()) {final long timestamp = bucket.getKey();if (timestamp < ourTimestamp + relativeLowerBound ||timestamp > ourTimestamp + relativeUpperBound) {continue;}for (BufferEntry<OTHER> entry: bucket.getValue()) {if (isLeft) {collect((T1) ourValue, (T2) entry.element, ourTimestamp, timestamp);} else {collect((T1) entry.element, (T2) ourValue, timestamp, ourTimestamp);}}}long cleanupTime = (relativeUpperBound > 0L) ? ourTimestamp + relativeUpperBound : ourTimestamp;if (isLeft) {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_LEFT, cleanupTime);} else {internalTimerService.registerEventTimeTimer(CLEANUP_NAMESPACE_RIGHT, cleanupTime);} }
这段代码的思路是:
- 取得当前流 StreamRecord 的时间戳,调用 isLate() 方法判断它是否是迟到数据(即时间戳小于当前水印值),如是则丢弃。
- 调用 addToBuffer() 方法,将时间戳和数据一起插入当前流对应的 MapState。
- 遍历另外一个流的 MapState,如果数据满足前述的时间区间条件,则调用 collect() 方法将该条数据投递给用户定义的 ProcessJoinFunction 进行处理。collect() 方法的代码如下,注意结果对应的时间戳是左右流时间戳里较大的那个。
private void collect(T1 left, T2 right, long leftTimestamp, long rightTimestamp) throws Exception {final long resultTimestamp = Math.max(leftTimestamp, rightTimestamp);collector.setAbsoluteTimestamp(resultTimestamp);context.updateTimestamps(leftTimestamp, rightTimestamp, resultTimestamp);userFunction.processElement(left, right, context, collector); }
- 调用 TimerService.registerEventTimeTimer() 注册时间戳为 timestamp + relativeUpperBound 的定时器,该定时器负责在水印超过区间的上界时执行状态的清理逻辑,防止数据堆积。注意左右流的定时器所属的 namespace 是不同的,具体逻辑则位于 onEventTime() 方法中。
@Override public void onEventTime(InternalTimer<K, String> timer) throws Exception {long timerTimestamp = timer.getTimestamp();String namespace = timer.getNamespace();logger.trace("onEventTime @ {}", timerTimestamp);switch (namespace) {case CLEANUP_NAMESPACE_LEFT: {long timestamp = (upperBound <= 0L) ? timerTimestamp : timerTimestamp - upperBound;logger.trace("Removing from left buffer @ {}", timestamp);leftBuffer.remove(timestamp);break;}case CLEANUP_NAMESPACE_RIGHT: {long timestamp = (lowerBound <= 0L) ? timerTimestamp + lowerBound : timerTimestamp;logger.trace("Removing from right buffer @ {}", timestamp);rightBuffer.remove(timestamp);break;}default:throw new RuntimeException("Invalid namespace " + namespace);} }
原文链接
本文为阿里云原创内容,未经允许不得转载。