递归算法应用(Python版)

文章目录

  • 递归
    • 递归定义
    • 递归调用的实现
    • 递归应用
      • 数列求和
      • 任意进制转换
      • 汉诺塔
      • 探索迷宫
      • 找零兑换-递归
      • 找零兑换-动态规划
    • 递归可视化
      • 简单螺旋图
      • 分形树:自相似递归图像
      • 谢尔宾斯基三角
    • 分治策略
    • 优化问题和贪心策略

递归

递归定义

递归是一种解决问题的方法,其精髓在于将问题分解为规模更小的相同问题,持续分解,直到问题规模小到可以用非常简单直接的方式来解决。

递归的问题分解方式非常独特,其算法方面的明显特征就是:在算法流程中调用自身。递归为我们提供了一种对复杂问题的优雅解决方案,精妙的递归算法常会出奇简单

递归三定律

  1. 递归算法必须有一个基本结束条件(最小规模问题的直接解决)
  2. 递归算法必须能改变状态向基本结束条件演进(减小问题规模)
  3. 递归算法必须调用自身(解决减小了规模的相同问题)

递归调用的实现

当一个函数被调用的时候,系统会把调用时的现场数据压入到系统调用栈

  • 每次调用,压入栈的现场数据称为栈帧当函数返回时,要从调用栈的栈顶取得返回地址,恢复现场,弹出栈帧,按地址返回。
image-20230723102648944

递归深度限制

在调试递归算法程序的时候经常会碰到这样的错误: RecursionError

  • 递归的层数太多,系统调用栈容量有限

这时候要检查程序中是否忘记设置基本结束条件,导致无限递归

  • 或者向基本结束条件演进太慢,导致递归层数太多,调用栈溢出

在Python内置的sys模块可以获取和调整最大递归深度

import sys
# 默认递归深度
print(sys.getrecursionlimit())  # 1000
# 修改递归深度为3000
sys.setrecursionlimit(3000)
print(sys.getrecursionlimit())  # 3000

递归应用

数列求和

问题:给定一个列表,返回所有数的和

  • 列表中数的个数不定,需要一个循环和一个累加变量来迭代求和
  • 假如没有循环语句?既不能用for,也不能用while对不确定长度的列表求和?

换个方式来表达数列求和:全括号表达式(1+(3+(5+(7+9))))

  • 上面这个式子,最内层的括号(7+9) ,这是无需循环即可计算的,实际上整个求和的过程是这样:
  • image-20230722163600454

跟据上述过程中所包含的重复模式,可以把求和问题归纳成这样:

  • 数列的和= “首个数” +“余下数列”的和

如果数列包含的数少到只有1个的话,它的和就是这个数了

  • 这是规模小到可以做最简单的处理
image-20230722163952193
def list_sum(num_list):if len(num_list) == 1:  # 最小规模return num_list[0]else: # 减小规模return num_list[0] + list_sum(num_list[1:]) # 调用自身print(list_sum([1, 3, 5, 7, 9]))
# 25
  1. 问题分解为更小规模的相同问题,并表现为“调用自身”
  2. 对“最小规模”问题的解决:简单直接

递归函数执行过程

递归函数调用和返回过程的链条

  • 先调用最小规模,然后一层一层往回
image-20230722164816841

数列求和问题首先具备了基本结束条件:当列表长度为1的时候,直接输出所包含的唯一数

数列求和处理的数据对象是一个列表,而基本结束条件是长度为1的列表,那递归算法就要改变列表并向长度为1的状态演进

  • 我们看到其具体做法是将列表长度减少1。

调用自身是递归算法中最难理解的部分,实际上我们理解为"问题分解成了规模更小的相同问题"就可以了

  • 在数列求和算法中就是“更短数列的求和问题”

任意进制转换

整数转换任意进制

  • 十进制有十个不同符号:convString"0123456789"

  • 比十小的整数,转换成十进制,直接查表就可以了: convString[n]

  • 把比十大的整数,拆成一系列比十小的整数,逐个查表

  • 比如七百六十九,拆成七、六、九,查表得到769就可以了

在递归三定律里,我们找到了"基本结束条件",就是小于十的整数

  • 拆解整数的过程就是向“基本结束条件”演进的过程

我们用整数除,和求余数两个计算来将整数一步步拆开

  • 除以“进制基base" (// base)对“进制基”求余数(% base)

问题分解

  • 余数总小于“进制基base”,是“基本结束条件”,可直接进行查表转换

  • 整数商成为“更小规模”问题,通过递归调用自身解决

image-20230723100228051
def to_str(n, base):convert_string = "0123456789ABCDEF"if n < base:return convert_string[n]  # 最小规模else:# 将商作为新的被除数return to_str(n//base, base) + convert_string[n%base]  # 减小规模,调用自身print(to_str(1453, 16))  # 5AD

汉诺塔

复杂递归问题

传说在一个印度教寺庙里,有3根柱子,其中一根套着64个由小到大的黄金盘片,僧侣们的任务就是要把这一叠黄金盘从一根柱子搬到另一根,但有两个规则:

  • 一次只能搬1个盘子

  • 大盘子不能叠在小盘子上

虽然这些黄金盘片跟世界末日有着神秘的联系,但我们却不必太担心,据计算,要搬完这64个盘片:

  • 需要的移动次数为264-1 =18,446,744,073,709,551,615次

  • 如果每秒钟搬动一次,则需要584,942,417,355(五千亿)年!

我们还是从递归三定律来分析河内塔问题

  • 基本结束条件(最小规模问题),如何减小规模,调用自身

分解为递归形式

假设我们有5个盘子,穿在1#柱,需要拥到3#柱

  • 如果能有办法把最上面的一摞4个盘子统统挪到2#柱,

  • 把剩下的最大号盘子直接从1#柱挪到3#柱

  • 再用同样的办法把2#柱上的那一摞4个盘子挪到3#柱,就完成了整个移动

image-20230723163717747

递归思路

将盘片塔从开始柱,经由中间柱,移动到目标柱:

  • 首先将上层N-1个盘片的盘片塔,从开始柱,经由目标柱,移动到中间柱;
  • 然后将第N个(最大的)盘片,从开始柱,移动到目标柱;
  • 最后将放置在中间柱的N-1个盘片的盘片塔,经由开始柱,移动到目标柱。

基本结束条件,也就是最小规模问题是:

  • 1个盘片的移动问题
def move_tower(height, from_pole, with_pole, to_pole):if height >= 1:move_tower(height - 1, from_pole, to_pole, with_pole)move_disk(height, from_pole, to_pole)move_tower(height - 1, with_pole, from_pole, to_pole)def move_disk(disk, from_pole, to_pole):print(f"Moving disk[{disk}] from {from_pole} to  {to_pole}")move_tower(3, "#1", "#2", "#3")
# Moving disk[1] from #1 to  #3
# Moving disk[2] from #1 to  #2
# Moving disk[1] from #3 to  #2
# Moving disk[3] from #1 to  #3
# Moving disk[1] from #2 to  #1
# Moving disk[2] from #2 to  #3
# Moving disk[1] from #1 to  #3

探索迷宫

将海龟放在迷宫中间,如何能找到出口

首先,我们将整个迷宫的空间(矩形)分为行列整齐的方格,区分出墙壁和通道。

  • 给每个方格具有行列位置,并赋予“墙壁”、通道”的属性

迷宫数据结构

考虑用矩阵方式来实现迷宫数据结构

  • 采用“数据项为字符列表的列表”这种两级列表的方式来保存方格内容
  • 采用不同字符来分别代表“墙壁+”、“通道”、“海龟投放点S"
  • 从一个文本文件maze2.txt逐行读入迷宫数据

maze2.txt

++++++++++++++++++++++
+   +   ++ ++        ++     ++++++++++
+ +    ++  ++++ +++ ++
+ +   + + ++    +++  +
+          ++  ++  + +
+++++ + +      ++  + +
+++++ +++  + +  ++   +
+          + + S+ +  +
+++++ +  + + +     + +
++++++++++++++++++++++

读入数据文件成功后

  • mazelist如下图示意
  • mazelist[row] [col]==‘+’
image-20230724091213714

算法思路

确定了迷宫数据结构之后,我们知道,对于海龟来说,其身处某个方格之中

  • 它所能移动的方向,必须是向着通道的方向

  • 如果某个方向是墙壁方格,就要换一个方向移动

image-20230724091356544

这样,探索迷宫的递归算法思路如下:

  • 将海龟从原位置向移动一步,以新位置递归调用探索迷宫寻找出口;
  • 如果上面的步骤找不到出口,那么将海龟从原位置向移动一步,以新位置递归调用探索迷宫;
  • 如果向南还找不到出口,那么将海龟从原位置向西移动一步,以新位置递归调用探索迷宫;
  • 如果向西还找不到出口,那么将海龟从原位置向移动一步,以新位置递归调用探索迷宫;如果上面四个方向都找不到出口,那么这个迷宫没有出口

特殊细节:

  • 如果我们向某个方向(如北)移动了海龟,那么如果新位置的北正好是一堵墙壁,那么在新位置上的递归调用就会让海龟向南尝试
  • 可是新位置的南边一格,正好就是递归调用之前的原位置,这样就陷入了无限递归的死循环之中
image-20230724091756282

所以需要有个机制记录海龟所走过的路径(不走重复的路)

  • 沿途洒“面包屑”,一旦前进方向发现“面包屑”,就不能再踩上去,而必须换下一个方向尝试对于递归调用来说,就是某方向的方格上发现“面包屑”,就立即从递归调用返回上一级
image-20230724091900500

递归调用的“基本结束条件”归纳如下:

  • 海龟碰到“墙壁”方格,递归调用结束,返回失败
  • 海龟碰到“面包屑”方格,表示此方格已访问过,递归调用结束,返回失败
  • 海龟碰到“出口”方格,即“位于边缘的通道”方格,递归调用结束,返回成功
  • 海龟在四个方向上探索都失败,递归调用结束,返回失败

辅助动画过程

为了让海龟在迷宫图里跑起来,我们给迷宫数据结构Maze Class添加一些成员和方法

  • t:一个作图的海龟,设置其shape为海龟的样子(缺省是一个箭头)
  • drawMaze():绘制出迷宫的图形,墙壁用实心方格绘制
  • updatePosition(row, col, val):更新海龟的位置,并做标注
  • isExit(row, col):判断是否“出口”
import turtlePART_OF_PATH = 'O'
TRIED = '.'
OBSTACLE = '+'
DEAD_END = '-'def drawMaze(self):self.t.speed(10)for y in range(self.rowsInMaze):for x in range(self.columnsInMaze):if self.mazelist[y][x] == OBSTACLE:self.drawCenteredBox(x+self.xTranslate,-y+self.yTranslate,'orange')self.t.color('black')self.t.fillcolor('blue')def drawCenteredBox(self,x,y,color):self.t.up()self.t.goto(x-.5,y-.5)self.t.color(color)self.t.fillcolor(color)self.t.setheading(90)self.t.down()self.t.begin_fill()for i in range(4):self.t.forward(1)self.t.right(90)self.t.end_fill()def moveTurtle(self,x,y):self.t.up()self.t.setheading(self.t.towards(x+self.xTranslate,-y+self.yTranslate))self.t.goto(x+self.xTranslate,-y+self.yTranslate)def dropBreadcrumb(self,color):self.t.dot(10,color)def updatePosition(self,row,col,val=None):if val:self.mazelist[row][col] = valself.moveTurtle(col,row)if val == PART_OF_PATH:color = 'green'elif val == OBSTACLE:color = 'red'elif val == TRIED:color = 'black'elif val == DEAD_END:color = 'red'else:color = Noneif color:self.dropBreadcrumb(color)def isExit(self,row,col):return (row == 0 orrow == self.rowsInMaze-1 orcol == 0 orcol == self.columnsInMaze-1 )def __getitem__(self,idx):return self.mazelist[idx]

主函数

def searchFrom(maze, startRow, startColumn):# try each of four directions from this point until we find a way out.# base Case return values:#  1.碰到墙壁,返回失败maze.updatePosition(startRow, startColumn)if maze[startRow][startColumn] == OBSTACLE :return False#  2. 碰到面包屑,或死胡同,返回失败if maze[startRow][startColumn] == TRIED or maze[startRow][startColumn] == DEAD_END:return False# 3. 碰到出口,返回成功if maze.isExit(startRow,startColumn):maze.updatePosition(startRow, startColumn, PART_OF_PATH)return True# 4. 撒一下面包屑,继续探索maze.updatePosition(startRow, startColumn, TRIED)# 向北南西东4个方向依次探索,or操作符具有短路效应(减小规模)found = searchFrom(maze, startRow-1, startColumn) or \searchFrom(maze, startRow+1, startColumn) or \searchFrom(maze, startRow, startColumn-1) or \searchFrom(maze, startRow, startColumn+1)# 如果探索成功,标记当前点,失败则标记为死胡同if found:maze.updatePosition(startRow, startColumn, PART_OF_PATH)else:maze.updatePosition(startRow, startColumn, DEAD_END)return found

测试运行

myMaze = Maze('maze2.txt')
myMaze.drawMaze()
myMaze.updatePosition(myMaze.startRow,myMaze.startCol)searchFrom(myMaze, myMaze.startRow, myMaze.startCol)
image-20230724095523562

找零兑换-递归

我们来找一种肯定能找到最优解的方法

  • 贪心策略是否有效依赖于具体的硬币体系

首先是确定基本结束条件,兑换硬币这个问题最简单直接的情况就是,需要兑换的找零,其面值正好等于某种硬币

  • 如找零25分,答案就是1个硬币!

其次是减小问题的规模,我们要对每种硬币尝试1次,例如美元硬币体系:

  • 找零减去1分(penny)后,求兑换硬币最少数量(递归调用自身);
  • 找零减去5分(nikel)后,求兑换硬币最少数量
  • 找零减去10分(dime)后,求兑换硬币最少数量
  • 找零减去25分(quarter)后,求兑换硬币最少数量上述4项中选择最小的一个。
image-20230724161659564
def rec_mc(coin_value_list, change):min_coins = changeif change in coin_value_list:return 1  # 最小规模,直接返回else:for i in [c for c in coin_value_list if c <= change]:num_coins = 1 + rec_mc(coin_value_list, change - i)  # 调用自身,减小规模,每次减去一种硬币面值,挑选最小数量if num_coins < min_coins:min_coins = num_coinsreturn min_coinsprint(rec_mc([1, 5, 10, 25], 45))  # 3
  • 虽然能解决问题,但极其低效,如果将45改成更大的数需要运行很长时间
  • 原因:重复计算太多

递归算法改进

对这个递归解法进行改进的关键就在于消除重复计算

  • 我们可以用一个表将计算过的中间结果保存起来,在计算之前查表看看是否已经计算过

这个算法的中间结果就是部分找零的最优解,在递归调用过程中已经得到的最优解被记录下来

  • 在递归调用之前,先查找表中是否已有部分找零的最优解
  • 如果有,直接返回最优解而不进行递归调用如果没有,才进行递归调用

优化后的代码

def rec_mc(coin_value_list, change, known_results):  # 硬币面值列表,找零,最优解min_coins = changeif change in coin_value_list:  # 递归结束基本结束条件known_results[change] = 1  # 记录最优解return 1  # 最小规模,直接返回elif known_results[change] > 0:return known_results[change]  # 查表成功,直接用最优解else:for i in [c for c in coin_value_list if c <= change]:num_coins = 1 + rec_mc(coin_value_list, change - i, known_results)  # 调用自身,减小规模,每次减去一种硬币面值,挑选最小数量if num_coins < min_coins:min_coins = num_coinsknown_results[change] = min_coinsreturn min_coinsprint(rec_mc([1, 5, 10, 25], 63, [0] * 64))  # 6
  • 改进后的算法,极大减少了递归调用的次数

找零兑换-动态规划

动态规划解法

中间结果记录可以很好解决找零兑换问题

实际上,这种方法还不能称为动态规划,而是叫做"memoization (记忆化/函数值缓存)"的技术提高了递归解法的性能

动态规划算法采用了一种更有条理的方式来得到问题的解

找零兑换的动态规划算法从最简单的“1分钱找零”的最优解开始,逐步递加上去,直到我们需要的找零钱数

在找零递加的过程中,设法保持每一分钱的递加都是最优解,一直加到求解找零钱数,自然得到最优解

递加的过程能保持最优解的关键是,其依赖于更少钱数最优解的简单计算,而更少钱数的最优解已经得到了。、

问题的最优解包含了更小规模子问题的最优解,这是一个最优化问题能够用动态规划策略解决的必要条件。

image-20230725101803674

递归可视化

递归可视化:图示

python turtle库

turtle — 海龟绘图 — Python 3.8.17 文档

Python的海龟作图系统turtle module

  • Python内置,随时可用,以LOGO语言的创意为基础

  • 其意象为模拟海龟在沙滩上爬行而留下的足迹

  • 爬行: forward(n); backward(n)

  • 转向: left(a); right(a)

  • 抬笔放笔: penup(); pendown()

  • 笔属性: pensize(s); pencolor©

简单螺旋图

import turtle
t = turtle.Turtle()
def draw_spiral(t, line_len):if line_len > 0:  # 最小规模0直接退出t.forward(line_len)t.right(90)draw_spiral(t, line_len - 5)  # 减小规模边长减5,调用自身
image-20230723112438391

分形树:自相似递归图像

分形Fractal ,是1975年由Mandelbrot开创的新学科

  • “一个粗糙或零碎的几何形状,可以分成数个部分,且每一部分都(至少近似地)是整体缩小后的形状”,即具有自相似的性质。

我们可以把树分解为三个部分:树干、左边的小树右边的小树

  • 分解后,正好符合递归的定义:对自身的调用
image-20230723113427328
import turtledef tree(branch_len):  # 树干长度if branch_len > 5:  # 树干最短限制,递归结束条件t.forward(branch_len)  # 画树干t.right(20)  # 右倾斜20度tree(branch_len - 15) # 递归调用,画右边小树,树干减15t.left(40)  # 向左40度,即左倾斜20度tree(branch_len - 15)  # 递归调用,画左边小树,树干减15t.right(20)  # 向右回20度,即回正t.backward(branch_len)  # 海龟回到原位置
# 由于递归特性,每次退回原位置先退最短的然后逐渐增加,类似栈后进先出,branch_len是最后的值往前
t = turtle.Turtle()
t.left(90)
t.penup()
t.backward(100)
t.pendown()
t.pencolor("green")
t.pensize(2)
tree(75)  # 画树干长度75的二叉树
t.hideturtle()  # 隐藏光标
turtle.exitonclick()
image-20230723122608421

谢尔宾斯基三角

分形构造,平面称谢尔宾斯基三角形,立体称谢尔宾斯基金字塔

  • 在一个等边三角形中,不断地被挖去最大的倒等边三角形

  • 实际上,真正的谢尔宾斯基三角形是完全不可见的,其面积为0,但周长无穷,是介于一维和二维之间的分数维(约1.585维)构造。

作图思路

根据自相似特性,谢尔宾斯基三角形是由3个尺寸减半的谢尔宾斯基三角形按照品字形拼叠而成

  • 由于我们无法真正做出谢尔宾斯基三角形(degree->0),只能做degree有限的近似图形。

在degree有限的情况下,degree=n的三角形,是由3个degree=n-1的三角形按照品字形拼叠而成

  • 同时,这3个degree=n-1的三角形边长均为degree=n的三角形的一半(规模减小)。当degree=0,则就是一个等边三角形,这是递归基本结束条件
image-20230723153750494

绘制等边三角形

import turtle
# 绘制等边三角形
def draw_triangle(points, color):t.fillcolor(color)t.penup()t.goto(points["top"])t.pendown()t.begin_fill()t.goto(points["left"])t.goto(points["right"])t.goto(points["top"])t.end_fill()

三角形顶点坐标

def get_mid(p1, p2): # 取两个点中点return ((p1[0] + p2[0]) / 2, (p1[1] + p2[1]) / 2)

谢尔宾斯基三角

def sierpinski(degree, points):color_map = ["blue", "red", "green", "white", "yellow", "orange"]draw_triangle(points, color_map[degree])# 画等边三角形if degree > 0:  # 最小规模,0直接退出# 减小规模,getMid边长减半# 调用自身安装从左到上到右的顺序sierpinski(degree - 1,# 调用自身,左方顶点{"left":points["left"],"top":get_mid(points["left"], points["top"]),"right":get_mid(points["left"], points["right"])})sierpinski(degree - 1,# 调用自身,上方顶点{"left":get_mid(points["left"], points["top"]),"top":points["top"],"right":get_mid(points["top"], points["right"])})sierpinski(degree - 1,# 调用自身,右方顶点{"left":get_mid(points["left"], points["right"]),"top":get_mid(points["top"], points["right"]),"right":points["right"]})

测试degree = 5 的三角形

# 最开始外轮廓三个顶点
points = {"left":(-200, -100),"top":(0, 200),"right":(200, -100)}
t = turtle.Turtle()
sierpinski(5, points)  # 画阶数为5的三角形
turtle.exitonclick()
image-20230723162527549

图示degree = 3绘制过程

image-20230723163034352

分治策略

解决问题典型策略:分而治之

  • 将问题分为若干更小规模的部分
  • 通过解决每一个小规模部分问题,并将结果汇总得到原问题的解
image-20230724095903873

递归算法与分治策略

递归三定律:

  • 基本结束条件,解决最小规模问题缩小规模,向基本结束条件演进调用自身来解决已缩小规模的相同问题

体现了分治策略问题

  • 解决依赖于若干缩小了规模的问题汇总得到原问题的解

应用:

  • 排序、查找、遍历、求值等等

优化问题和贪心策略

计算机科学中许多算法都是为了找到某些问题的最优解

  • 例如,两个点之间的最短路径;能最好匹配一系列点的直线;或者满足一定条件的最小集合

找零兑换问题

一个经典案例是兑换最少个数的硬币问题

  • 假设你为一家自动售货机厂家编程序,自动售货机要每次找给顾客最少数量硬币;

  • 假设某次顾客投进$1纸币,买了£37的东西,要找g63,那么最少数量就是: 2个quarter (g25)、1个dime (g10)和3个p

  • 来解决这些问题,例如最直观的“贪心策略”一般我们这么做:从最大面值的硬币开始,用尽量多的数量有余额的,再到下一最大面值的硬币,还用尽量多的数量,一直到penny (g1)为止

image-20230724110738929

贪心策略

  • 因为我们每次都试图解决问题的尽量大的一部对应到兑换硬币问题,就是每次以最多数量的大面值硬币来迅速减少找零面值

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/51072.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

BootstrapBlazor组件使用:数据注解

文章目录 前言BB数据注解数据注解源码数据注解简介注解简单实例[BB 编辑弹窗](https://www.blazor.zone/edit-dialog)[ValidateForm 表单组件](https://www.blazor.zone/validate-form)使用简介 前言 BootstrapBlazor(一下简称BB)是个特别好用的组件&#xff0c;基本上满足了大…

Docker的基础操作

1.安装docker服务&#xff0c;配置镜像加速器 1.1 使用yum进行安装 添加docker-ce的源信息 [rootlocalhost ~]# yum install yum-utils device-mapper-persistent-data lvm2 -y [rootlocalhost ~]# yum-config-manager --add-repo https://mirrors.tuna.tsinghua.edu.cn/doc…

C#开发WinForm之DataGridView开发

前言 DataGridView是开发Winform的一个列表展示&#xff0c;类似于表格。学会下面的基本特征用法&#xff0c;再辅以经验&#xff0c;基本功能开发没问题。 1.设置 DataGridView表格行首为序号索引, //设置 DataGridView表格行首为序号索引private void dataGridView1_RowPost…

【开个空调】语音识别+红外发射

废话少说&#xff0c;直接上空调板子&#xff1a;YAPOF3。红外接收发射模块用的某宝上发现的YF-33(遗憾解码还没搞清楚&#xff0c;不然做个lirc.conf功能才多)。最后是语音识别用的幻尔的&#xff0c;某宝自然也有&#xff0c;它是个i2c的接口。 本篇胡说八道其实纯粹为了留个…

华为云Stack的学习(一)

一、华为云Stack架构 1.HCS 物理分散、逻辑统一、业务驱动、运管协同、业务感知 2.华为云Stack的特点 可靠性 包括整体可靠性、数据可靠性和单一设备可靠性。通过云平台的分布式架构&#xff0c;从整体系统上提高可靠性&#xff0c;降低系统对单设备可靠性的要求。 可用性…

Java后端开发面试题篇——Redis

Redis的数据持久化策略有哪些 RDB的执行原理&#xff1f; bgsave开始时会fork主进程得到子进程&#xff0c;子进程共享主进程的内存数据。完成fork后读取内存数据并写入 RDB 文件。 fork采用的是copy-on-write技术&#xff1a; 当主进程执行读操作时&#xff0c;访问共享内存…

实现外网访问本地服务

最近开发需要其他项目组的人访问我本地服务测试,但又不在同一个地方,不能使用内网访问,所以需要外网访问本地服务功能. 条件: 1.需要一台具备公网IP的服务器 我用的服务器是windows,电脑也是Windows系统 2.下载frp 软件,只需要下载一份就可以了,分别放到服务器上和本地目录既…

无涯教程-PHP - Session选项

从PHP7 起&#xff0c; session_start()()函数接受一系列选项&#xff0c;以覆盖在 php.ini 中设置的会话配置指令。这些选项支持 session.lazy_write &#xff0c;默认情况下此函数为on&#xff0c;如果会话数据已更改&#xff0c;则会导致PHP覆盖任何会话文件。 添加的另一个…

Java实现一个简单的图书管理系统(内有源码)

简介 哈喽哈喽大家好啊&#xff0c;之前作者也是讲了Java不少的知识点了&#xff0c;为了巩固之前的知识点再为了让我们深入Java面向对象这一基本特性&#xff0c;就让我们完成一个图书管理系统的小项目吧。 项目简介&#xff1a;通过管理员和普通用户的两种操作界面&#xff0…

让eslint的错误信息显示在项目界面上

1.需求描述 效果如下 让eslint中的错误&#xff0c;显示在项目界面上 2.问题解决 1.安装 vite-plugin-eslint 插件 npm install vite-plugin-eslint --save-dev2.配置插件 // vite.config.js import { defineConfig } from vite import vue from vitejs/plugin-vue import e…

基于黄金正弦算法优化的BP神经网络(预测应用) - 附代码

基于黄金正弦算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码 文章目录 基于黄金正弦算法优化的BP神经网络&#xff08;预测应用&#xff09; - 附代码1.数据介绍2.黄金正弦优化BP神经网络2.1 BP神经网络参数设置2.2 黄金正弦算法应用 4.测试结果&#xff1a;5…

C语言练习1(巩固提升)

C语言练习1 选择题 前言 “人生在勤&#xff0c;勤则不匮。”幸福不会从天降&#xff0c;美好生活靠劳动创造。全面建成小康社会的奋斗目标&#xff0c;为广大劳动群众指明了光明的未来&#xff1b;全面建成小康社会的历史任务&#xff0c;为广大劳动群众赋予了光荣的使命&…

采用typescript编写,实现ofd前端预览、验章

前言 浏览器内核已支持pdf文件的渲染&#xff0c;这极大的方便了pdf文件的阅读和推广。ofd文件作为国产板式标准&#xff0c;急需一套在浏览器中渲染方案。 本人研究ofd多年&#xff0c;分别采用qt、c# 开发了ofd阅读器。本人非前端开发人员&#xff0c;对js、typescript并不熟…

Maven 一键部署到 SSH 服务器

简介 利用 Maven Mojo 功能一键部署 jar 包或 war 包到远程服务器上。 配置 在 maven 的setting.xml 配置服务器 SSH 账号密码。虽然可以在工程的 pom.xml 直接配置&#xff0c;但那样不太安全。 <servers><server><id>iq</id><configuration&…

【C++代码】有序数组的平方,长度最小的子数组,螺旋矩阵 II--代码随想录

题目&#xff1a;有序数组的平方 给你一个按 非递减顺序 排序的整数数组 nums&#xff0c;返回 每个数字的平方 组成的新数组&#xff0c;要求也按 非递减顺序 排序。 题解 数组其实是有序的&#xff0c; 只不过负数平方之后可能成为最大数了。那么数组平方的最大值就在数组的…

食品制造行业云MES系统解决方案

食品饮料行业大致可以分为初级产品加工、二次加工、食品制造、食品分装、调味品和饲料加工等几大类。由于处于产业链不同的位置&#xff0c;其管理存在一定的差异&#xff0c;那么食品行业的MES应该怎么建设呢&#xff1f; 食品饮料行业生产管理特点&#xff1a; 食品饮料行业…

全球Salesforce顾问薪资大揭秘!顾问如何升职加薪?

Salesforce顾问通过针对业务挑战提出、记录和分析需求&#xff0c;提供解决方案&#xff0c;从而帮助企业改善Salesforce的流程和效率。顾问是企业和Salesforce之间的桥梁。 Salesforce顾问的薪资一直是生态系统中的热门话题&#xff0c;备受求职者关注。本篇文章将分享提高顾…

Grafana Dashboard 备份方案

文章目录 Grafana Dashboard 备份方案引言工具简介支持的组件要求配置备份安装使用 pypi 安装grafana备份工具配置环境变量使用Grafana Backup Tool 进行备份恢复备份 Grafana Dashboard恢复 Grafana Dashboard结论Grafana Dashboard 备份方案 引言 每个使用 Grafana 的同学都…

基于微信小程序的物流管理系统3txar

在此基础上&#xff0c;结合现有物流管理体系的特点&#xff0c;运用新技术&#xff0c;构建了以 springboot为基础的物流信息化管理体系。首先&#xff0c;以需求为依据&#xff0c;对目前传统物流管理基础业务进行了较为详尽的了解和分析。根据需求分析结果进行了系统的设计&…