从《国际大学生程序设计大赛算法与实现》中所学
任务:
给定N, a, p, 求出(x^N)%p=a 在模p意义下的所有解x。
说明:
令g为p的原根,因为p为素数,所以phi(p)=p-1。
由原根的性质得:
如果g为p的原根,则:g^i mod p != g^j mod p (p为素数), 其中i != j且i, j介於1至(p-1)之间
所以,可以设g^y=x, g^t=a,则有:
g^(y*N)%p=g^t
又由原根的性质:
g^(y*N)%p=g^t -> (y*N)%(p-1)=t (此方程可以由拓展欧几里得解)
另外g^t=a可以由离散对数求出
给定newx, k, m, 方程 (x^k)%m=newx, 求在模m意义下的所有解x。
限制:
0 <= newx, m, k <= 1.5*10^15; m是素数。
/*hdu 3930题意:给定newx, k, m, 方程 (x^k)%m=newx, 求在模m意义下的所有解x。限制:0 <= newx, m, k <= 1.5*10^15; m是素数。思路:N次剩余*/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define LL __int64
#define PB push_back
LL mul(LL a,LL b,LL m){LL ret = 0;a %= m;while(b){if(b & 1) ret = (ret + a) % m;a = (a + a) % m;b >>= 1;}return ret;
}
LL a_b_MOD_c(LL a,LL b,LL m){LL ret = 1;a %= m;while(b){if(b&1) ret = mul(ret,a,m);a = mul(a,a,m);b >>= 1;}return ret;
}LL ext_gcd(LL a,LL b,LL &x,LL &y){if(b==0) { x=1, y=0; return a; }LL ret= ext_gcd(b,a%b,y,x);y-= a/b*x;return ret;
}
vector<LL> a;
bool g_test(LL g,LL p){for(LL i=0;i<a.size();++i)if(a_b_MOD_c(g,(p-1)/a[i],p)==1)return 0;return 1;
}
LL pri_root(LL p){a.clear();LL tmp=p-1;for(LL i=2;i<=tmp/i;++i)if(tmp%i==0){a.push_back(i);while(tmp%i==0)tmp/=i;}if(tmp!=1)a.push_back(tmp);LL g=1;while(true){if(g_test(g,p))return g;++g;}
}
const int HASH_MOD=9876543;
LL key[HASH_MOD], val[HASH_MOD];
int head[HASH_MOD], next[HASH_MOD];
struct Hash{int tot;void init(){memset(head, -1, sizeof(head));tot = 0;}LL insert(LL x, LL y){int k = x % HASH_MOD;key[tot] = x;val[tot] = y;next[tot] = head[k];head[k] = tot++;}LL find(LL x){int k = x % HASH_MOD;for(int i = head[k]; i != -1; i = next[i])if(key[i] == x)return val[i];return -1;}
}hs;
//求解模方程a^x=b(mod m),n为素数,无解返回-1
//注意:要求0 < a < m; 0 <= b < m; 否则按题意自己转化。
//复杂度O(sqrt(m))
LL log_mod(LL a, LL b, LL m){hs.init();LL s = ceil(sqrt(m + 0.5));LL cur = 1;for (int i = 0; i < s; ++i){if(hs.find(cur)==-1) hs.insert(cur,i); //记得先判重,在插入cur = cur * a % m;}LL v = a_b_MOD_c(a, (m - s - 1 + m) % m, m);for(int i = 0; i < s; ++i){LL tmp = hs.find(b);if(tmp!=-1)return s * i + tmp;b=b*v%m;}return -1;
}
/*n次剩余任务:给定N, a, p, 求出(x^N)%p=a 在模p意义下的所有解x。说明:令g为p的原根,因为p为素数,所以phi(p)=p-1。由原根的性质得:如果g为p的原根,则:g^i mod p != g^j mod p (p为素数), 其中i != j且i, j介於1至(p-1)之间所以,可以设g^y=x, g^t=a,则有:g^(y*N)%p=g^t又由原根的性质:g^(y*N)%p=g^t -> (y*N)%(p-1)=t (此方程可以由拓展欧几里得解)另外g^t=a可以由离散对数求出*/
vector<LL> residue(LL p, LL N, LL a){LL g = pri_root(p);g %= p;LL m = log_mod(g, a, p);vector<LL> ret;if(a == 0){ret.PB(0);return ret;}if(m == -1)return ret;LL A = N, B = p - 1, C = m, x, y;LL d = ext_gcd(A, B, x, y);if(C % d != 0) return ret;x = x * (C / d) % B;LL delta = B / d;for(int i = 0; i < d; ++i){x = ((x + delta) % B + B) % B;ret.PB(a_b_MOD_c(g, x, p));}sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;
}
int main(){int cas = 0;LL k,m,newx;while(scanf("%I64d%I64d%I64d",&k, &m, &newx)!=EOF){vector<LL> ans;ans = residue(m,k,newx);printf("case%d:\n",++cas);if(ans.size()==0) puts("-1");for(int i = 0; i < ans.size(); ++i)printf("%I64d\n",ans[i]);}return 0;
}
/*hdu 3930题意:给定newx, k, m, 方程 (x^k)%m=newx, 求在模m意义下的所有解x。限制:0 <= newx, m, k <= 1.5*10^15; m是素数。思路:N次剩余*/
#include <iostream>
#include <cstdio>
#include <cmath>
#include <cstring>
#include <vector>
#include <algorithm>
using namespace std;
#define LL __int64
#define PB push_back
LL mul(LL a,LL b,LL m){LL ret = 0;a %= m;while(b){if(b & 1) ret = (ret + a) % m;a = (a + a) % m;b >>= 1;}return ret;
}
LL a_b_MOD_c(LL a,LL b,LL m){LL ret = 1;a %= m;while(b){if(b&1) ret = mul(ret,a,m);a = mul(a,a,m);b >>= 1;}return ret;
}LL ext_gcd(LL a,LL b,LL &x,LL &y){if(b==0) { x=1, y=0; return a; }LL ret= ext_gcd(b,a%b,y,x);y-= a/b*x;return ret;
}
vector<LL> a;
bool g_test(LL g,LL p){for(LL i=0;i<a.size();++i)if(a_b_MOD_c(g,(p-1)/a[i],p)==1)return 0;return 1;
}
LL pri_root(LL p){a.clear();LL tmp=p-1;for(LL i=2;i<=tmp/i;++i)if(tmp%i==0){a.push_back(i);while(tmp%i==0)tmp/=i;}if(tmp!=1)a.push_back(tmp);LL g=1;while(true){if(g_test(g,p))return g;++g;}
}
const int HASH_MOD=9876543;
LL key[HASH_MOD], val[HASH_MOD];
int head[HASH_MOD], next[HASH_MOD];
struct Hash{int tot;void init(){memset(head, -1, sizeof(head));tot = 0;}LL insert(LL x, LL y){int k = x % HASH_MOD;key[tot] = x;val[tot] = y;next[tot] = head[k];head[k] = tot++;}LL find(LL x){int k = x % HASH_MOD;for(int i = head[k]; i != -1; i = next[i])if(key[i] == x)return val[i];return -1;}
}hs;
//求解模方程a^x=b(mod m),n为素数,无解返回-1
//注意:要求0 < a < m; 0 <= b < m; 否则按题意自己转化。
//复杂度O(sqrt(m))
LL log_mod(LL a, LL b, LL m){hs.init();LL s = ceil(sqrt(m + 0.5));LL cur = 1;for (int i = 0; i < s; ++i){if(hs.find(cur)==-1) hs.insert(cur,i); //记得先判重,在插入cur = cur * a % m;}LL v = a_b_MOD_c(a, (m - s - 1 + m) % m, m);for(int i = 0; i < s; ++i){LL tmp = hs.find(b);if(tmp!=-1)return s * i + tmp;b=b*v%m;}return -1;
}
/*n次剩余任务:给定N, a, p, 求出(x^N)%p=a 在模p意义下的所有解x。说明:令g为p的原根,因为p为素数,所以phi(p)=p-1。由原根的性质得:如果g为p的原根,则:g^i mod p != g^j mod p (p为素数), 其中i != j且i, j介於1至(p-1)之间所以,可以设g^y=x, g^t=a,则有:g^(y*N)%p=g^t又由原根的性质:g^(y*N)%p=g^t -> (y*N)%(p-1)=t (此方程可以由拓展欧几里得解)另外g^t=a可以由离散对数求出*/
vector<LL> residue(LL p, LL N, LL a){LL g = pri_root(p);g %= p;LL m = log_mod(g, a, p);vector<LL> ret;if(a == 0){ret.PB(0);return ret;}if(m == -1)return ret;LL A = N, B = p - 1, C = m, x, y;LL d = ext_gcd(A, B, x, y);if(C % d != 0) return ret;x = x * (C / d) % B;LL delta = B / d;for(int i = 0; i < d; ++i){x = ((x + delta) % B + B) % B;ret.PB(a_b_MOD_c(g, x, p));}sort(ret.begin(), ret.end());ret.erase(unique(ret.begin(), ret.end()), ret.end());return ret;
}
int main(){int cas = 0;LL k,m,newx;while(scanf("%I64d%I64d%I64d",&k, &m, &newx)!=EOF){vector<LL> ans;ans = residue(m,k,newx);printf("case%d:\n",++cas);if(ans.size()==0) puts("-1");for(int i = 0; i < ans.size(); ++i)printf("%I64d\n",ans[i]);}return 0;
}