Problem Description
用1,2,...,n表示n个盘子,称为1号盘,2号盘,...。号数大盘子就大。经典的汉诺塔问
题经常作为一个递归的经典例题存在。可能有人并不知道汉诺塔问题的典故。汉诺塔来源于
印度传说的一个故事,上帝创造世界时作了三根金刚石柱子,在一根柱子上从下往上按大小
顺序摞着64片黄金圆盘。上帝命令婆罗门把圆盘从下面开始按大小顺序重新摆放在另一根柱
子上。并且规定,在小圆盘上不能放大圆盘,在三根柱子之间一回只能移动一个圆盘。我们
知道最少需要移动2^64-1次.在移动过程中发现,有的圆盘移动次数多,有的少 。 告之盘
子总数和盘号,计算该盘子的移动次数.
Input
包含多组数据,每组首先输入T,表示有T行数据。每行有两个整数,分别表示盘子的数目N(1<=N<=60)和盘号k(1<=k<=N)。
Output
对于每组数据,输出一个数,表示到达目标时k号盘需要的最少移动数。
Example Input
2
60 1
3 1
Example Output
576460752303423488
4
#include <stdio.h> #include <stdlib.h> long long int move(int n,int m) { if(m==n) return 1; else return 2*move(n,m+1); } int main() { int t,n,i,m; while(~scanf("%d",&t)) for(i=1;i<=t;i++) { scanf("%d%d",&n,&m); printf("%lld\n",move(n,m)); } return 0; }