神经网络NN算法

1. 背景:
1.1 以人脑中的神经网络为启发,历史上出现过很多不同版本
1.2 最著名的算法是1980年的 backpropagation 

2. 多层向前神经网络(Multilayer Feed-Forward Neural Network)
2.1 Backpropagation被使用在多层向前神经网络上
2.2 多层向前神经网络由以下部分组成:

           输入层(input layer), 隐藏层 (hidden layers), 输入层 (output layers)


2.3 每层由单元(units)组成
2.4 输入层(input layer)是由训练集的实例特征向量传入
2.5 经过连接结点的权重(weight)传入下一层,一层的输出是下一层的输入
2.6 隐藏层的个数可以是任意的,输入层有一层,输出层有一层
2.7 每个单元(unit)也可以被称作神经结点,根据生物学来源定义
2.8 以上成为2层的神经网络(输入层不算)
2.8 一层中加权的求和,然后根据非线性方程转化输出
2.9 作为多层向前神经网络,理论上,如果有足够多的隐藏层(hidden layers) 和足够大的训练集, 可以模     
拟出任何方程

3. 设计神经网络结构
3.1 使用神经网络训练数据之前,必须确定神经网络的层数,以及每层单元的个数
3.2 特征向量在被传入输入层时通常被先标准化(normalize)到0和1之间 (为了加速学习过程)
3.3 离散型变量可以被编码成每一个输入单元对应一个特征值可能赋的值
比如:特征值A可能取三个值(a0, a1, a2), 可以使用3个输入单元来代表A。
如果A=a0, 那么代表a0的单元值就取1, 其他取0;
如果A=a1, 那么代表a1de单元值就取1,其他取0,以此类推

3.4 神经网络即可以用来做分类(classification)问题,也可以解决回归(regression)问题
3.4.1 对于分类问题,如果是2类,可以用一个输出单元表示(0和1分别代表2类)
如果多余2类,每一个类别用一个输出单元表示
所以输入层的单元数量通常等于类别的数量

3.4.2 没有明确的规则来设计最好有多少个隐藏层
3.4.2.1 根据实验测试和误差,以及准确度来实验并改进
4. 交叉验证方法(Cross-Validation)
-fold cross valida
K-fold cross validation 

5. Backpropagation算法
5.1 通过迭代性的来处理训练集中的实例
5.2 对比经过神经网络后输入层预测值(predicted value)与真实值(target value)之间
5.3 反方向(从输出层=>隐藏层=>输入层)来以最小化误差(error)来更新每个连接的权重(weight)
5.4 算法详细介绍
输入:D:数据集,l 学习率(learning rate), 一个多层前向神经网络
输入:一个训练好的神经网络(a trained neural network)

5.4.1 初始化权重(weights)和偏向(bias): 随机初始化在-1到1之间,或者-0.5到0.5之间,每个单元有          
一个偏向
5.4.2 对于每一个训练实例X,执行以下步骤:
5.4.2.1: 由输入层向前传送





5.4.2.2 根据误差(error)反向传送
对于输出层:
  对于隐藏层:
 
权重更新:
偏向更新
5.4.3 终止条件
5.4.3.1 权重的更新低于某个阈值
5.4.3.2 预测的错误率低于某个阈值
5.4.3.3 达到预设一定的循环次数
6. Backpropagation 算法举例

对于输出层:
对于隐藏层:
权重更新:
偏向更新:


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508976.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

神经网络算法实现

1. 关于非线性转化方程(non-linear transformation function) sigmoid函数(S 曲线)用来作为activation function:1.1 双曲函数(tanh)tanh是双曲函数中的一个,tanh()为双曲正切。在数学中,双曲正切“tanh”是由基本双曲函数双曲正弦和双曲余弦推导而来公式…

神经网络算法的实例

1.简单非线性关系数据集测试(XOR)X: Y0 0 00 1 11 0 11 1 0Code:#!/usr/bin/env python #-*-coding:utf-8-*- #神经网络测试的例子 #简单非线性关系数据集测试(XOR)异或的运算 f…

线性回归模型

1. 简单线性回归模型举例: 汽车卖家做电视广告数量与卖出的汽车数量: 1.1 如何练出适合简单线性回归模型的最佳回归线/ 使sum of squares最小1.1.2 计算分子 (1-2)(14-20)(3-2)(24-20)(2-2)(18-20)(1-2)(17-20)(3-2)(27-20) 6 4 0 3 7 20分母 &…

多元线性回归模型

1. 与简单线性回归区别(simple linear regression)多个自变量(x)2. 多元回归模型yβ0+β1x1β2x2 ... βpxpε其中:β0,β1,β2... βp是参数ε是误差值3. 多元回归方程E(y)β0+β1x…

非线性回归

1. 概率&#xff1a; 1.1 定义 概率(P)robability: 对一件事情发生的可能性的衡量1.2 范围 0 < P < 11.3 计算方法&#xff1a; 1.3.1 根据个人置信1.3.2 根据历史数据1.3.3 根据模拟数据1.4 条件概率&#xff1a;2. Logistic Regression (逻辑回归)2.1 例子2.2 基本…

层次聚类

假设有N个待聚类的样本&#xff0c;对于层次聚类来说&#xff0c;步骤&#xff1a;1、&#xff08;初始化&#xff09;把每个样本归为一类&#xff0c;计算每两个类之间的距离&#xff0c;也就是样本与样本之间的相似度&#xff1b;2、寻找各个类之间最近的两个类&#xff0c;把…

(优秀文章保存)Quartz优秀文章保存

Quartz的基本使用之入门&#xff08;2.3.0版本&#xff09; 一、Quartz可以用来做什么 Quartz是一个强大任务调度框架&#xff0c;我工作时候会在这些情况下使用到quartz框架&#xff0c;当然还有很多的应用场景&#xff0c;在这里只列举2个实际用到的 餐厅系统会在每周四晚…

cross-entropy函数

我们理想情况是让神经网络学习更快假设简单模型: 只有一个输入,一个神经元,一个输出简单模型: 输入为1时, 输出为0初始 w 0.6, b 0.9 初始预测的输出 a 0.82, 需要学习学习率: 0.15演示: 初始: w 2.0, b 2.0, 初始预测输出: 0.98, 和理想输出0差点很远演示:神经网络的学…

MyBatis之快速入门

MyBatis之快速入门 2017/9/30首先我要明确告诉大家的是MyBatis是一个java持久层框架&#xff0c;以前我们都是用jdbc来将我们的java程序与数据库相连接&#xff0c;而MyBatis是对jdbc的一个封装。 1.MyBatis框架的引入 我们来看看传统的编程方式中使用jdbc的问题: 1.数据库连接…

【使用注意】特殊中括号[]的特殊json数组

Testpublic void demo93() throws Exception {String str "[\"a\", \"b\", \"c\"]";//生成json数组JSONArray createArray new JSONArray();createArray.put("a");createArray.put("b");createArray.put("…

MyBatis之Mapper动态代理开发

MyBatis之Mapper动态代理开发 2017/9/301.SqlSession的使用范围 1.SqlSessionFactoryBuilder SqlSessionFactoryBuilder是以工具类的方式来使用:需要创建sqlSessionFactory时就new一个 SqlSessionFactoryBuilder 2.sqlSessionFactory 正常开发时&#xff0c;以单例方式管理sqlS…

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射 2017/9/30在MyBatis中&#xff0c;我们通过parameterType完成输入映射(指将值映射到sql语句的占位符中&#xff0c;值的类型与dao层响应方法的参数类型一致)&#xff0c;通过resultType完成输出映射(从数据库中…

MyBatis之优化MyBatis配置文件中的配置

MyBatis之优化MyBatis配置文件中的配置 2017/9/30MyBatis配置文件很重要&#xff0c;首先我们来看看MyBatis配置文件中的内容和顺序: 文件目录结构如下: 1.<properties>属性定义 可以把一些通用的属性值配置在属性文件中&#xff0c;加载到mybatis运行环境内。例如创建d…

【转载保存】在python中如何用word2vec来计算句子的相似度

在python中&#xff0c;如何使用word2vec来计算句子的相似度呢&#xff1f; 第一种解决方法 如果使用word2vec&#xff0c;需要计算每个句子/文档中所有单词的平均向量&#xff0c;并使用向量之间的余弦相似度来计算句子相似度&#xff0c;代码示例如下&#xff1a; import …

Spark介绍

Spark Spark 是什么? Apache Spark?是用于大规模数据处理的快速和通用引擎. 速度:在内存中,运行程序比Hadoop MapReduce快100倍&#xff0c;在磁盘上则要快10倍. Apache Spark具有支持非循环数据流和内存计算的高级DAG执行引擎. 易用:可以使用Java&#xff0c;Scala&#…

MyBatis之使用resultMap实现高级映射

MyBatis之使用resultMap实现高级映射 2017/09/30对于数据库中对表的增删改查操作&#xff0c;我们知道增删改都涉及的是单表&#xff0c;而只有查询操作既可以设计到单表操作又可以涉及到多表操作&#xff0c;所以对于输入映射parameterType而言是没有所谓的高级映射的&#xf…

MyBatis之查询缓存

MyBatis之查询缓存 2017/09/30正如大多数持久层框架一样&#xff0c;MyBatis同样也提供了对查询数据的缓存支持。今后我们要学习的SpringMVC框架属于系统控制层&#xff0c;它也有它的缓存区域&#xff0c;对响应的jsp页面进行缓存&#xff1b;Spring属于系统业务层&#xff0c…

MyBatis3.x和Spring3.x的整合

MyBatis3.x和Spring3.x的整合 2017/10/021.mybatis和spring整合的思路 1.让spring管理SqlSessionFactory 2.让spring管理mapper对象和dao 使用spring和mybatis整合开发mapper代理及原始dao接口。 自动开启事务&#xff0c;自动管理sqlsession 3.让spring管理数据源(即数据库连接…

特征选择

特征选择是特征工程中的重要问题&#xff08;另一个重要的问题是特征提取&#xff09;&#xff0c;坊间常说&#xff1a;数据和特征决定了机器学习的上限&#xff0c;而模型和算法只是逼近这个上限而已。由此可见&#xff0c;特征工程尤其是特征选择在机器学习中占有相当重要的…

交叉验证

sklearn中的交叉验证&#xff08;Cross-Validation&#xff09; sklearn是利用python进行机器学习中一个非常全面和好用的第三方库&#xff0c;用过的都说好。今天主要记录一下sklearn中关于交叉验证的各种用法&#xff0c;主要是对sklearn官方文档 Cross-validation: evaluati…