非线性回归

1. 概率:

1.1 定义   概率(P)robability: 对一件事情发生的可能性的衡量
1.2 范围   0 <= P <= 1
1.3 计算方法: 
1.3.1 根据个人置信
1.3.2 根据历史数据
1.3.3 根据模拟数据
1.4 条件概率:
2. Logistic Regression (逻辑回归)

2.1 例子
2.2 基本模型
测试数据为X(x0,x1,x2···xn)
要学习的参数为: Θ(θ0,θ1,θ2,···θn)

向量表示:

处理二值数据,引入Sigmoid函数时曲线平滑化 




预测函数:

用概率表示:
正例(y=1):
反例(y=0):

2.3  Cost函数
线性回归:
找到合适的 θ0,θ1使上式最小

Logistic regression:
Cost函数:



目标:找到合适的 θ0,θ1使上式最小
2.4 解法:梯度下降(gradient decent)

   


更新法则:

学习率
同时对所有的θ进行更新
重复更新直到收敛   



1.      皮尔逊相关系数 (Pearson Correlation Coefficient):
1.1 衡量两个值线性相关强度的量
1.2 取值范围 [-1, 1]: 
正向相关: >0, 负向相关:<0, 无相关性:=0

1.3

2. 计算方法举例:

X Y
1 10
3 12
8 24
7 21
9 34
   

3. 其他例子:

4. R平方值:

4.1定义:决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。

4.2 描述:如R平方为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%

4.3: 简单线性回归:R^2 = r * r
多元线性回归:




5. R平方也有其局限性:R平方随着自变量的增加会变大,R平方和样本量是有关系的。因此,我们要到R平方进行修正。修正的方法:







5. R平方也有其局限性:R平方随着自变量的增加会变大,R平方和样本量是有关系的。因此,我们要到R平方进行修正。修正的方法:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

层次聚类

假设有N个待聚类的样本&#xff0c;对于层次聚类来说&#xff0c;步骤&#xff1a;1、&#xff08;初始化&#xff09;把每个样本归为一类&#xff0c;计算每两个类之间的距离&#xff0c;也就是样本与样本之间的相似度&#xff1b;2、寻找各个类之间最近的两个类&#xff0c;把…

(优秀文章保存)Quartz优秀文章保存

Quartz的基本使用之入门&#xff08;2.3.0版本&#xff09; 一、Quartz可以用来做什么 Quartz是一个强大任务调度框架&#xff0c;我工作时候会在这些情况下使用到quartz框架&#xff0c;当然还有很多的应用场景&#xff0c;在这里只列举2个实际用到的 餐厅系统会在每周四晚…

cross-entropy函数

我们理想情况是让神经网络学习更快假设简单模型: 只有一个输入,一个神经元,一个输出简单模型: 输入为1时, 输出为0初始 w 0.6, b 0.9 初始预测的输出 a 0.82, 需要学习学习率: 0.15演示: 初始: w 2.0, b 2.0, 初始预测输出: 0.98, 和理想输出0差点很远演示:神经网络的学…

MyBatis之快速入门

MyBatis之快速入门 2017/9/30首先我要明确告诉大家的是MyBatis是一个java持久层框架&#xff0c;以前我们都是用jdbc来将我们的java程序与数据库相连接&#xff0c;而MyBatis是对jdbc的一个封装。 1.MyBatis框架的引入 我们来看看传统的编程方式中使用jdbc的问题: 1.数据库连接…

【使用注意】特殊中括号[]的特殊json数组

Testpublic void demo93() throws Exception {String str "[\"a\", \"b\", \"c\"]";//生成json数组JSONArray createArray new JSONArray();createArray.put("a");createArray.put("b");createArray.put("…

MyBatis之Mapper动态代理开发

MyBatis之Mapper动态代理开发 2017/9/301.SqlSession的使用范围 1.SqlSessionFactoryBuilder SqlSessionFactoryBuilder是以工具类的方式来使用:需要创建sqlSessionFactory时就new一个 SqlSessionFactoryBuilder 2.sqlSessionFactory 正常开发时&#xff0c;以单例方式管理sqlS…

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射 2017/9/30在MyBatis中&#xff0c;我们通过parameterType完成输入映射(指将值映射到sql语句的占位符中&#xff0c;值的类型与dao层响应方法的参数类型一致)&#xff0c;通过resultType完成输出映射(从数据库中…

MyBatis之优化MyBatis配置文件中的配置

MyBatis之优化MyBatis配置文件中的配置 2017/9/30MyBatis配置文件很重要&#xff0c;首先我们来看看MyBatis配置文件中的内容和顺序: 文件目录结构如下: 1.<properties>属性定义 可以把一些通用的属性值配置在属性文件中&#xff0c;加载到mybatis运行环境内。例如创建d…

【转载保存】在python中如何用word2vec来计算句子的相似度

在python中&#xff0c;如何使用word2vec来计算句子的相似度呢&#xff1f; 第一种解决方法 如果使用word2vec&#xff0c;需要计算每个句子/文档中所有单词的平均向量&#xff0c;并使用向量之间的余弦相似度来计算句子相似度&#xff0c;代码示例如下&#xff1a; import …

Spark介绍

Spark Spark 是什么? Apache Spark?是用于大规模数据处理的快速和通用引擎. 速度:在内存中,运行程序比Hadoop MapReduce快100倍&#xff0c;在磁盘上则要快10倍. Apache Spark具有支持非循环数据流和内存计算的高级DAG执行引擎. 易用:可以使用Java&#xff0c;Scala&#…

MyBatis之使用resultMap实现高级映射

MyBatis之使用resultMap实现高级映射 2017/09/30对于数据库中对表的增删改查操作&#xff0c;我们知道增删改都涉及的是单表&#xff0c;而只有查询操作既可以设计到单表操作又可以涉及到多表操作&#xff0c;所以对于输入映射parameterType而言是没有所谓的高级映射的&#xf…

MyBatis之查询缓存

MyBatis之查询缓存 2017/09/30正如大多数持久层框架一样&#xff0c;MyBatis同样也提供了对查询数据的缓存支持。今后我们要学习的SpringMVC框架属于系统控制层&#xff0c;它也有它的缓存区域&#xff0c;对响应的jsp页面进行缓存&#xff1b;Spring属于系统业务层&#xff0c…

MyBatis3.x和Spring3.x的整合

MyBatis3.x和Spring3.x的整合 2017/10/021.mybatis和spring整合的思路 1.让spring管理SqlSessionFactory 2.让spring管理mapper对象和dao 使用spring和mybatis整合开发mapper代理及原始dao接口。 自动开启事务&#xff0c;自动管理sqlsession 3.让spring管理数据源(即数据库连接…

特征选择

特征选择是特征工程中的重要问题&#xff08;另一个重要的问题是特征提取&#xff09;&#xff0c;坊间常说&#xff1a;数据和特征决定了机器学习的上限&#xff0c;而模型和算法只是逼近这个上限而已。由此可见&#xff0c;特征工程尤其是特征选择在机器学习中占有相当重要的…

交叉验证

sklearn中的交叉验证&#xff08;Cross-Validation&#xff09; sklearn是利用python进行机器学习中一个非常全面和好用的第三方库&#xff0c;用过的都说好。今天主要记录一下sklearn中关于交叉验证的各种用法&#xff0c;主要是对sklearn官方文档 Cross-validation: evaluati…

机器学习名词解释

1. 损失函数 损失函数是用来估量你模型的预测值f(x)与真实值Y的不一致程度&#xff0c;它是一个非负实值函数,通常使用L(Y, f(x))来表示&#xff0c;损失函数越小&#xff0c;模型的鲁棒性就越好。损失函数是经验风险函数的核心部分&#xff0c;也是结构风险函数重要组成部分。…

【转载保存】推荐ApacheCN开源的一个机器学习路线图

转载&#xff1a;https://mp.weixin.qq.com/s/EMWFFPsaKaGc8FO1g-htzg 推荐ApacheCN开源的一个机器学习路线图 原创&#xff1a; 机器学习初学者 机器学习初学者 今天 推荐一个ApacheCN开源的一个机器学习路线图&#xff1a; https://github.com/apachecn/AiLearning 注意…

CNN(Convolutional Neural Network) 的基础

卷积神经网络&#xff08;Convolutional Neural Network&#xff0c;简称CNN&#xff09;&#xff0c;是一种前馈神经网络&#xff0c;人工神经元可以响应周围单元&#xff0c;可以进行大型图像处理。卷积神经网络包括卷积层和池化层。 卷积神经网络是受到生物思考方式启发的ML…

语音识别学习日志 2019-7-14 语音识别基础知识准备2 {EM算法与混合高斯模型(Gaussian mixture model, GMM)}

https://blog.csdn.net/lin_limin/article/details/81048411会对GMM和EM做详细介绍 本文参考&#xff1a; http://www.ituring.com.cn/article/497545(GMM模型) https://blog.csdn.net/xmu_jupiter/article/details/50889023(GMM模型) http://www.cnblogs.com/wjy-lulu/p/7…

【爬虫】爬取带有cookie才能获取网页内容的新闻网站

工作任务&#xff1a; 今天老大让我跑取一个新闻网站&#xff1a;https://www.yidaiyilu.gov.cn/ 采坑记录&#xff1a; https协议&#xff0c;如果利用http协议去请求会报出如下信息&#xff1a; 错误&#xff1a;SSLHandshake错误就知道了&#xff0c;客户端与服务端进行连…