非线性回归

1. 概率:

1.1 定义   概率(P)robability: 对一件事情发生的可能性的衡量
1.2 范围   0 <= P <= 1
1.3 计算方法: 
1.3.1 根据个人置信
1.3.2 根据历史数据
1.3.3 根据模拟数据
1.4 条件概率:
2. Logistic Regression (逻辑回归)

2.1 例子
2.2 基本模型
测试数据为X(x0,x1,x2···xn)
要学习的参数为: Θ(θ0,θ1,θ2,···θn)

向量表示:

处理二值数据,引入Sigmoid函数时曲线平滑化 




预测函数:

用概率表示:
正例(y=1):
反例(y=0):

2.3  Cost函数
线性回归:
找到合适的 θ0,θ1使上式最小

Logistic regression:
Cost函数:



目标:找到合适的 θ0,θ1使上式最小
2.4 解法:梯度下降(gradient decent)

   


更新法则:

学习率
同时对所有的θ进行更新
重复更新直到收敛   



1.      皮尔逊相关系数 (Pearson Correlation Coefficient):
1.1 衡量两个值线性相关强度的量
1.2 取值范围 [-1, 1]: 
正向相关: >0, 负向相关:<0, 无相关性:=0

1.3

2. 计算方法举例:

X Y
1 10
3 12
8 24
7 21
9 34
   

3. 其他例子:

4. R平方值:

4.1定义:决定系数,反应因变量的全部变异能通过回归关系被自变量解释的比例。

4.2 描述:如R平方为0.8,则表示回归关系可以解释因变量80%的变异。换句话说,如果我们能控制自变量不变,则因变量的变异程度会减少80%

4.3: 简单线性回归:R^2 = r * r
多元线性回归:




5. R平方也有其局限性:R平方随着自变量的增加会变大,R平方和样本量是有关系的。因此,我们要到R平方进行修正。修正的方法:







5. R平方也有其局限性:R平方随着自变量的增加会变大,R平方和样本量是有关系的。因此,我们要到R平方进行修正。修正的方法:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508969.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

python dir()函数使用

您可以使用内置的dir()函数列出一个定义对象的标识符。例如&#xff0c;对于一个模块&#xff0c;包括在模块中定义的函数&#xff0c;类和变量。 当你给dir()提供一个模块名字时&#xff0c;它返回在那个模块中定义的名字的列表。当没有为其提供参数时, 它返回当前模块中定义的…

【链接保存】十分钟上手sklearn:特征提取,常用模型,交叉验证

原博客地址&#xff1a;http://blackblog.tech/2018/02/05/%E5%8D%81%E5%88%86%E9%92%9F%E4%B8%8A%E6%89%8Bsklearn-1/ 简书地址&#xff1a;https://www.jianshu.com/p/731610dca805

【链接保存】十分钟上手sklearn:安装,获取数据,数据预处理

简书地址&#xff1a;https://www.jianshu.com/p/a9168803edc6 博主地址&#xff1a;http://blackblog.tech/2018/02/05/%E5%8D%81%E5%88%86%E9%92%9F%E4%B8%8A%E6%89%8Bsklearn-1/

层次聚类

假设有N个待聚类的样本&#xff0c;对于层次聚类来说&#xff0c;步骤&#xff1a;1、&#xff08;初始化&#xff09;把每个样本归为一类&#xff0c;计算每两个类之间的距离&#xff0c;也就是样本与样本之间的相似度&#xff1b;2、寻找各个类之间最近的两个类&#xff0c;把…

常用软件包和环境配置(机器学习)

1. 常用软件包&#xff1a;TheanoPylearn2scikit-neuralnetworkCaffeDeeplearning4jTorchhttp://deeplearning.net/software_links/2. 环境配置Linux: UbuntuEclipsePyDevPythonCUDAGPU: https://developer.nvidia.com/cuda-gpus3. 神经网络算法 (neural networks)http://www.m…

(优秀文章保存)Quartz优秀文章保存

Quartz的基本使用之入门&#xff08;2.3.0版本&#xff09; 一、Quartz可以用来做什么 Quartz是一个强大任务调度框架&#xff0c;我工作时候会在这些情况下使用到quartz框架&#xff0c;当然还有很多的应用场景&#xff0c;在这里只列举2个实际用到的 餐厅系统会在每周四晚…

【使用注意】Jsoup的select方法

之前做了一个频道抓取&#xff1a;获取div Elements div_e;div_e doc.select("div");Iterator<Element> div_it div_e.iterator();while (div_it.hasNext()) {处理逻辑} 我是想通过select div块然后去遍历获取div里的内容&#xff0c;但是发现有的新闻网址频…

cross-entropy函数

我们理想情况是让神经网络学习更快假设简单模型: 只有一个输入,一个神经元,一个输出简单模型: 输入为1时, 输出为0初始 w 0.6, b 0.9 初始预测的输出 a 0.82, 需要学习学习率: 0.15演示: 初始: w 2.0, b 2.0, 初始预测输出: 0.98, 和理想输出0差点很远演示:神经网络的学…

DButils工具使用笔记以及常见问题总结

入门&#xff1a; https://www.cnblogs.com/smyhvae/p/4085684.html 一、字段名称和实体类命名不用 解决办法&#xff1a;给查询结果的显示字段取别名&#xff0c;如TEMPLATE_ID AS templateId select news_id as id, title from test where id1 二、DBUtils使用BeanListH…

Tensorflow报错:AttributeError: 'module' object has no attribute 'scalar_summary'

报错&#xff1a; tf.scalar_summary(l.op.name (raw), l) AttributeError: module object has no attribute scalar_summary 解决&#xff1a; tf.scalar_summary(images, images)改为&#xff1a;tf.summary.scalar(images, images) tf.image_summary(images, images)改为&…

python安装Scrapy踩过的坑以及安装指导

在pyCharm中的setting中直接添加包然后报错,然后利用window控制台pip install 报错异常&#xff1a; Command "python setup.py egg_info" failed with error code 1 第一步&#xff1a;准备更新pip&#xff0c;利用以下指令 python -m pip install --upgrade pip…

MyBatis之快速入门

MyBatis之快速入门 2017/9/30首先我要明确告诉大家的是MyBatis是一个java持久层框架&#xff0c;以前我们都是用jdbc来将我们的java程序与数据库相连接&#xff0c;而MyBatis是对jdbc的一个封装。 1.MyBatis框架的引入 我们来看看传统的编程方式中使用jdbc的问题: 1.数据库连接…

【使用注意】特殊中括号[]的特殊json数组

Testpublic void demo93() throws Exception {String str "[\"a\", \"b\", \"c\"]";//生成json数组JSONArray createArray new JSONArray();createArray.put("a");createArray.put("b");createArray.put("…

MyBatis之Mapper动态代理开发

MyBatis之Mapper动态代理开发 2017/9/301.SqlSession的使用范围 1.SqlSessionFactoryBuilder SqlSessionFactoryBuilder是以工具类的方式来使用:需要创建sqlSessionFactory时就new一个 SqlSessionFactoryBuilder 2.sqlSessionFactory 正常开发时&#xff0c;以单例方式管理sqlS…

【转载保存】IDEA maven中添加本地jar包

http://www.cnblogs.com/pldsalaryblogs/p/8194742.html

【转载保存】Java 8 Lambda实现原理分析

怒学Java8系列一:Lambda表达式介绍 Java 8 Lambda实现原理分析

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射

MyBatis之输入(parameterType)与输出(resultType、resultMap)映射 2017/9/30在MyBatis中&#xff0c;我们通过parameterType完成输入映射(指将值映射到sql语句的占位符中&#xff0c;值的类型与dao层响应方法的参数类型一致)&#xff0c;通过resultType完成输出映射(从数据库中…

java几种遍历方式以及效率对比

几种遍历方式&#xff1a; /*** */ package effectiveUse;import java.util.Iterator; import java.util.List;/*** author weijie** 2019年4月13日*/ public class ForEachList {/** 方式1&#xff1a;开始时候*/public void countSizeForEachList(List<Integer> list)…

MyBatis之优化MyBatis配置文件中的配置

MyBatis之优化MyBatis配置文件中的配置 2017/9/30MyBatis配置文件很重要&#xff0c;首先我们来看看MyBatis配置文件中的内容和顺序: 文件目录结构如下: 1.<properties>属性定义 可以把一些通用的属性值配置在属性文件中&#xff0c;加载到mybatis运行环境内。例如创建d…

【转载保存】在python中如何用word2vec来计算句子的相似度

在python中&#xff0c;如何使用word2vec来计算句子的相似度呢&#xff1f; 第一种解决方法 如果使用word2vec&#xff0c;需要计算每个句子/文档中所有单词的平均向量&#xff0c;并使用向量之间的余弦相似度来计算句子相似度&#xff0c;代码示例如下&#xff1a; import …