1. 概率:
1.1 定义 概率(P)robability: 对一件事情发生的可能性的衡量
1.2 范围 0 <= P <= 1
1.3 计算方法:
1.3.1 根据个人置信
1.3.2 根据历史数据
1.3.3 根据模拟数据
1.4 条件概率:
2. Logistic Regression (逻辑回归)
2.1 例子
2.2 基本模型
测试数据为X(x0,x1,x2···xn)
要学习的参数为: Θ(θ0,θ1,θ2,···θn)
向量表示:
处理二值数据,引入Sigmoid函数时曲线平滑化
预测函数:
用概率表示:
正例(y=1):
反例(y=0):
2.3 Cost函数
线性回归:
找到合适的 θ0,θ1使上式最小
Logistic regression:
Cost函数:
目标:找到合适的 θ0,θ1使上式最小
2.4 解法:梯度下降(gradient decent)
更新法则:
学习率
同时对所有的θ进行更新
重复更新直到收敛
1. 皮尔逊相关系数 (Pearson Correlation Coefficient):
1.1 衡量两个值线性相关强度的量
1.2 取值范围 [-1, 1]:
正向相关: >0, 负向相关:<0, 无相关性:=0
1.3
2. 计算方法举例:
X | Y |
1 | 10 |
3 | 12 |
8 | 24 |
7 | 21 |
9 | 34 |
3. 其他例子: