sparkStreaming连接kafka整合hbase和redis

sparkStreaming消费kafka数据,并将数据保存到redis和hbase当中去,实现实时

import org.apache.hadoop.hbase.client.{Admin, Connection}
import org.apache.hadoop.hbase.{HColumnDescriptor, HTableDescriptor, TableName}
import org.apache.kafka.clients.consumer.ConsumerRecord
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.dstream.InputDStream
import org.apache.spark.streaming.kafka010.{HasOffsetRanges, OffsetRange}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}
import redis.clients.jedis.Jedisobject StreamingKafka  extends Logging{def main(args: Array[String]): Unit = {val brokers = ConfigUtil.getConfig(Constants.KAFKA_BOOTSTRAP_SERVERS)val topics = Array(ConfigUtil.getConfig(Constants.CHENG_DU_GPS_TOPIC),ConfigUtil.getConfig(Constants.HAI_KOU_GPS_TOPIC))val conf = new SparkConf().setMaster("local[1]").setAppName("sparkKafka")val group:String = "gps_consum_group"val kafkaParams = Map[String, Object]("bootstrap.servers" -> brokers,"key.deserializer" -> classOf[StringDeserializer],"value.deserializer" -> classOf[StringDeserializer],"group.id" -> group,"auto.offset.reset" -> "latest",// earliest,latest,和none"enable.auto.commit" -> (false: java.lang.Boolean))val sparkSession: SparkSession = SparkSession.builder().config(conf).getOrCreate()val context: SparkContext = sparkSession.sparkContextcontext.setLogLevel("WARN")// val streamingContext = new StreamingContext(conf,Seconds(5))//获取streamingContextval streamingContext: StreamingContext =  new StreamingContext(context,Seconds(1))val result: InputDStream[ConsumerRecord[String, String]] = HbaseTools.getStreamingContextFromHBase(streamingContext,kafkaParams,topics,group,"(.*)gps_topic")result.foreachRDD(eachRdd =>{if(!eachRdd.isEmpty()){eachRdd.foreachPartition(eachPartition =>{val connection: Connection = HBaseUtil.getConnectionval jedis: Jedis = JedisUtil.getJedis//判断表是否存在,如果不存在就进行创建val admin: Admin = connection.getAdminif(!admin.tableExists(TableName.valueOf(Constants.HTAB_GPS))){val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_GPS))htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY))admin.createTable(htabgps)}if(!admin.tableExists(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER))){val htabgps = new HTableDescriptor(TableName.valueOf(Constants.HTAB_HAIKOU_ORDER))htabgps.addFamily(new HColumnDescriptor(Constants.DEFAULT_FAMILY))admin.createTable(htabgps)}eachPartition.foreach(record =>{//保存到HBase和redisval consumerRecords: ConsumerRecord[String, String] = HbaseTools.saveToHBaseAndRedis(connection,jedis, record)})JedisUtil.returnJedis(jedis)connection.close()})//更新offsetval offsetRanges: Array[OffsetRange] = eachRdd.asInstanceOf[HasOffsetRanges].offsetRanges//result.asInstanceOf[CanCommitOffsets].commitAsync(offsetRanges)  //将offset提交到默认的kafka的topic里面去保存for(eachrange <-  offsetRanges){val startOffset: Long = eachrange.fromOffset  //起始offsetval endOffset: Long = eachrange.untilOffset  //结束offsetval topic: String = eachrange.topicval partition: Int = eachrange.partitionHbaseTools.saveBatchOffset(group,topic,partition+"",endOffset)}}})streamingContext.start()streamingContext.awaitTermination()}
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508768.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

sparksql一些指标

统计指标 select substr(tb.begin_address_code , 1 ,4) as begin_address_code , count(distinct vehicle_license) as dayVehicleCount from (select begin_address_code , vehicle_license from order where date_format(create_time , yyyy-MM-dd) 2020-02-15 ) tb grou…

sparkConf常见参数设置

def getSparkConf():SparkConf {val sparkConf: SparkConf new SparkConf().set("spark.driver.cores","4") //设置driver的CPU核数.set("spark.driver.maxResultSize","2g") //设置driver端结果存放的最大容量&#xff0c;这里设置…

sparkSession常见参数设置

def getSparkSession(sparkConf:SparkConf):SparkSession {val sparkSession: SparkSession SparkSession.builder().config(sparkConf)//调度模式.config("spark.scheduler.mode", "FAIR").config("spark.executor.memoryOverhead", "51…

关于kafka中acks是否可以为all

kafka源码中有这样一段代码&#xff1a; org.apache.kafka.clients.producer.KafkaProducer private static int parseAcks(String acksString) {try {return acksString.trim().equalsIgnoreCase("all") ? -1 : Integer.parseInt(acksString.trim());} catch (Numb…

关于统计时间切片标签的一些sql

------当天付费明细表 DROP TABLE IF EXISTS rpt.tmp_mm_rb_daily_ffmx; create table rpt.tmp_mm_rb_daily_ffmx as select a.* FROM (select c.feemsisdn, c.destmsisdn, c.day, c.price/1000 fee, c.contentid, dc.content_name, c.ordernumber, c.cdrtime, c.createtime, c…

hadoop 二次开发DatanodeWriteTimeout设置

int getDatanodeWriteTimeout(int numNodes) {return this.dfsClientConf.confTime > 0 ? this.dfsClientConf.confTime 5000 * numNodes : 0;}int getDatanodeReadTimeout(int numNodes) {return this.dfsClientConf.socketTimeout > 0 ? 5000 * numNodes this.dfsC…

聚类算法

假定样本集 D {X1&#xff0c; 的&#xff0c;…&#xff0c; Xm} 包含 m 个无标记样本&#xff0c; 每个样本 X (X1; X2;… ; Xn) 是一个 n 维特征向量&#xff0c;则聚类算法将样本 集 D 划分为 k 个不相交的簇 {Gl I l 1&#xff0c; 2;… &#xff0c;时&#xff0c;其中…

k-means均值向量

给定样本集 D {Xl) 的&#xff0c;… ,xm}, “k 均值” (k-means )算法针对聚类所 得簇划分 C {C1, C2,…, Ck} 最小化平方误差 ι ELL Ilx 一队IIL il EGi 其中队甘il LEGi X 是簇 q 的均值向量.在一定程度上 刻画了簇内样本围绕簇均值向量的紧密程度&#xff0c; E 值越小则…

学习向量量化

与 k 均值算法类似&#xff0c;“学习向量量化” (Learning Vector Quantization&#xff0c;简 称 LVQ)也是试图找到一组原型向量来刻画聚类结构&#xff0c; 但与一般聚类算法不同 的是&#xff0c; LVQ 假设数据样本带有类别标记&#xff0c;学习过程利用样本的这些监督信息…

k 近邻加权平均

k 近邻(k-Nearest Neighbor&#xff0c;简称 kNN)学习是一种常用的监督学习方法&#xff0c; 其工作机制非常简单: 给定测试样本?基于某种距离度量找出训练集中与其最 靠近的 k 个训练样本&#xff0c;然后基于这 k 个"邻居"的信息来进行预测. 通常&#xff0c; 在分…

k 近邻降维

k 近邻(k-Nearest Neighbor&#xff0c;简称 kNN)学习是一种常用的监督学习方法&#xff0c; 其工作机制非常简单: 给定测试样本?基于某种距离度量找出训练集中与其最 靠近的 k 个训练样本&#xff0c;然后基于这 k 个"邻居"的信息来进行预测. 通常&#xff0c; 在分…

维度建模工具

幵始维度建模工作前&#xff0c;项目组需要理解业务需求&#xff0c;以及作为基础的源数据的实际情况。 通过与、 Ik务代表交流来发现需求&#xff0c;用于理解他们的基于关键性能指标、竞争性商业问题、 决策制定过程、支持分析需求的目标。同时&#xff0c;数据实际情况可以通…

Cube和Grouping 和Rollup

增强的聚合 Cube和Grouping 和Rollup 这几个分析函数通常用于OLAP中&#xff0c;不能累加&#xff0c;而且需要根据不同维度上钻和下钻的指标统计&#xff0c;比如&#xff0c;分小时、天、月的UV数。 GROUPING SETS 在一个GROUP BY查询中&#xff0c;根据不同的维度组合进行聚…

常见维度建模错误

需要避免的常见维度建模错误 错误 10: 在事实表中放入文本属性 要从数据仓库事实表中 挑出这些文本属性&#xff0c;并将它们放入维度表中。 错误 9: 限制使用冗长的描述符以节省空间 维度表从几何上看总是比事实表小很多。 错误 8: 将层次划分为多个维度 以用户看来最自然最 有…

2020-09-21

columns has 234 elements while hbase.columns.mapping has 92 elements (counting the key if implicit)) 根本原因&#xff1a; 对于4000个字符&#xff0c;hive Metastore中SERDE_PARAMS表中PARAM_VALUE字段的字符限制是此问题的根本原因。 此限制可防止Hive创建具有高列数…

2020-09-23

insert into table ads_user_action_convert_day select ‘2019-02-10’, uv.day_count, ua.order_count, cast(ua.order_count/uv.day_count as decimal(10,2)) visitor2order_convert_ratio, ua.payment_count, cast(ua.payment_count/ua.order_count as decimal(10,2)) orde…

2020-09-28

Mybatis中#{}和${} 1、#{}将传入的数据都当成一个字符串&#xff0c;会对自动传入的数据加一个引号&#xff08;单引号&#xff1f;双引号&#xff1f;加了引号就对了&#xff09;如&#xff1a; //传入的值是sex order by #{column} 解析后为 order by “sex” //将会出错 2…

PageUtil

Data NoArgsConstructor public class PageUtil implements Serializable {private static final long serialVersionUID 1L;/*** 总记录数*/private int totalCount;/*** 每页记录数*/private int pageSize;/*** 总页数*/private int totalPage;/*** 当前页数*/private int c…

springboot+事务,多张表的操作事务回滚

第一步&#xff0c;在springboot的启动类上开启事务&#xff0c;注解 EnableTransactionManagement 第二步&#xff1a;事务注解&#xff0c;回滚 Transactional(rollbackFor Exception.class) //Transactional和try catch捕获异常会让注解失效&#xff0c;所以&#xff1a; 第…

@EnableTransactionManagement

GetMapping("/saveData")ApiOperation("传感器数据上云-红外测温及气体")Transactional(rollbackFor Exception.class)public WebResult saveData(InfrareDataReqVo infrareDataReqVo){try {PigHeatEntity pigHeatEntitynew PigHeatEntity();pigHeatEntit…