tcp状态机-三次握手-四次挥手以及常见面试题

TCP状态机介绍

在网络协议栈中,目前只有TCP提供了一种面向连接的可靠性数据传输。而可靠性,无非就是保证,我发给你的,你一定要收到。确保中间的通信过程中,不会丢失数据和乱序。在TCP保证可靠性数据传输的实现来看,超时重传、序列号及数据的应答 这三个特征 就是实现可靠性的最基本保证,而对于tcp窗口大小等等设置,也是保证可靠性的一个方面。所有的目的只为一个,保证传输数据的完整性。为了解决传输线路的不稳定性造成数据包的丢失情况,tcp 使用了发送方超时重传和接收方数据应答的策略。概括而言,就是一种“状态协议“,保证通信双方数据收发的一致性。

TCP有限状态机

  1. TCP_CLOSE:关闭状态,一个新建的TCP socket 会处于该状态。
  2. TCP_LISTEN: 监听状态,一般服务器端套接字在调用Listen系统调用后即处于该状态。
  3. TCP_SYN_SENT:同步信号已经发送状态,这个状态一般是指客户端发送SYN(建立连接的同步)数据包后所处的状态(tcp三次握手的第一个包)。在接收到远端服务器端的应答后,即从该状态进入TCP_ESTABLISHED状态。
  4. TCP_SYN_RECEIVED:同步信号已经接受状态,服务器端在接受到远端客户端SYN数据包后,进行相应的处理(创建通信套接字等),然后发送应答数据包(tcp三次握手的第二个包),并将新创建的通信套接字状态设置为TCP_SYN_RECEIVED,在接受到客户端的应答后,即进入TCP_ESTABLISED状态。
  5. TCP_ESTABLISED:建立连接状态,这是双方进行正常通信所处的状态。
  6. TCP_FIN_WAIT_1:本地发送FIN(用于结束连接的)数据包后即可进入该状态,等待对方的应答。一般一端发送完其所要发送的数据后,即可发送FIN数据包,此时发送通道被关闭,但仍可继续接受远端发送的数据包。在接受到远端发送的对于FIN数据包的应答后,将进入TCP_FIN_WAIT_2状态。
  7. TCP_FIN_WAIT_2:进入该状态表示本地已经接受到远端发送的对于本地之前发送的FIN数据包的应答。进入该状态后,本地仍然可以继续接受远端发送给本地的数据包。在接受到远端发送的FIN数据包后(表示远端也已经发送完数据),本地将发送一个应答数据包,并进入TCP_TIME_WAIT状态。TCP_TIME_WAIT状态存在的时间被称为2MSL时间,这一方面是为避免本地发送的应答数据包丢失,另一方面避免一个新创建的套接字接收到旧套接字中遗留的数据包。
  8. TCP_TIME_WAIT:该转状态呗称为2MSL等待状态。如果在此期间接收到远端发送的FIN数据包,则表示之前在TCP_FIN_WAIT_2状态发送的ACK应答数据包在传输中丢失或者长时间被延迟,从而造成了远端重新发送了FIN数据包,此时重复ACK应答数据包。一旦2MSL时间到期,则将进入TCP_CLOSED状态,即完成关闭操作。
  9. TCP_CLOSE_WAIT:该状态存在于后关闭的一端。当接收到远端发送的FIN数据包后,本地发送一个ACK应答数据包,并将该套接字状态从TCP_ESTABLISED设置为TCP_CLOSE_WAIT。本地可以继续向远端发送数据包,在发送完所有的数据后,本地将发送一个FIN数据包关闭本地发送通道,并将状态设置为TCP_LAST_ACK状态,等待远端对FIN数据包的应答数据包。
  10. TCP_CLOSING:如果通信双方同时发送FIN数据包,则同时进行关闭操作,则双方将同时进入TCP_CLOSING状态。具体的,本地发送一个FIN数据包以结束本地数据包发送,如果在等待应答期间,接收到远端发送的FIN数据包,则本地将状态设置为TCP_CLOSING状态。在接收到应答后,再继续装入到TCP_CLOSE_WAIT状态。
  11. TCP_LAST_ACK:作为后关闭的一方,在发送FIN数据包后,即进入TCP_LAST_ACK状态。此时等待远端发送应答数据包,在接收到应答数据包后,即完成关闭操作,进入TCP_CLOSE状态。

三次握手

IP/TCP三次握手示意图

三次握手过程

三次握手过程是客户端主动向正在监听的服务发起交换序号、建立连接的过程,三次握手过程如下:

  1. 第一次握手
    客户端主动发送SYN包到服务器,其中包含客户端的初始序号seq=x,并进入SYN_SENT状态,等待服务器确认。(其中,SYN=1,ACK=0,表示这是一个TCP连接请求数据报文;序号seq=x,x是随机数,表明传输数据时的第一个数据字节的序号是x)。
  2. 第二次握手
    服务器收到请求后,必须确认客户的数据包,同时自己也发送一个SYN包,即SYN+ACK包,此时服务器进入SYN_RECV状态。(其中确认报文段中,标识位SYN=1,ACK=1,表示这是一个TCP连接响应数据报文,并含服务端的初始序号seq=y,y是随机数,以及服务器对客户端初始序号的确认号ack(服务器)=seq(客户端)+1=x+1)。
  3. 第三次握手
    客户端收到服务器的SYN+ACK包,向服务器发送确认包(seq=x+1,ack=y+1),此包发送完毕,客户端和服务器进入ESTAB_LISHED(TCP连接成功)状态,完成三次握手。

三次握手交换各自的序号,建立起连接。

握手过程为什么是三次而不是两次、四次?

TCP作为一种可靠传输控制协议,其核心思想:既要保证数据可靠传输,又要提高传输的效率,而用三次恰恰可以满足以上两方面的需求!

为了实现可靠数据传输, TCP 协议的通信双方, 都必须维护一个序列号, 以标识发送出去的数据包中, 哪些是已经被对方收到的。 三次握手的过程即是通信双方相互告知序列号起始值, 并确认对方已经收到了序列号起始值的必经步骤

两次握手的场景

两次握手过程其实只有三次握手的前两次握手,没有第三次握手

两次握手至多只有连接发起方的起始序列号能被确认, 另一方选择的序列号则得不到确认。

想象一个场景,client向server发送一个连接请求,由于一些原因,导致client发出的连接请求在一个网络节点逗留了比较多的时间。此时client会将此连接请求作为无效处理 又重新向server发起了一次新的连接请求,server正常收到此连接请求后建立了连接,数据传输完成后释放了连接。如果此时client发出的第一次请求又到达了server,server会以为client又发起了一次连接请求。如果是两次握手:此时连接就建立了,server会维持连接一直等待client发送数据,从而白白浪费server的资源。 如果是三次握手:由于client没有发起连接请求,也就不会理会server的连接响应,server没有收到client的确认连接,就会关闭掉本次连接。如果第一次握手大量延时或者第二次握手大量丢失 ,就会造成“SYN的洪水攻击”效果。

四次握手的场景

四次握手其实就是将第二次握手发送ACK与SYN分开进行,这样子有违高效的原则。

序列号与确认号

  • wireshark中序列号默认显示相对序列号,序列号是从0开始,实际序列号是在三次握手过程双方随机选取的。可以通过设置来显示真实的序列号,【编辑】->【首选项】->【Protocols】->【TCP】->【Relative sequence numbers(Requires “Analyer TCP sequence numbers”)】复选框去掉
  • 通过流量图来分析序列号与确认号。【统计】->【流量图】->【流类型】选择【TCP Flows】
    TCP Flows

通过HTTP请求的TCP流量图分析序列号与确认号

  1. 第一次握手,client发送SYN包请求建立TCP连接,初始化序列号seq = 4129057982,随机生成的, 确认号ack = 0,一般都是0;
  2. 第二次握手,server对请求进行确认,ack = 4129057982 + 1(SYN虽没负载数据,但消耗一个序列号),同时进行SYN,seq = 4200111240(随机)
  3. 第三次握手,client对server的SYN包发送ACK包,ack = 4200111240 + 1,seq = 4129057983
  4. 第四个包,client发送负载725字节的HTTP请求包,seq = 4129057983(注意ACK没有消耗seq序号,跟第三次握手的seq一样), ack = 4200111241
  5. 第五个包,server响应tcp确认包,seq = 4200111241, ack = 4129057983 + 725 = 4129058708

四次挥手

四次挥手主要是关闭tcp建立起来的连接,释放相关资源

四次挥手过程

在实际应用中,客户端主动关闭到服务器的连接,服务器在检测到客户端关闭连接后,关闭对应的连接。

  • 第一次挥手: 客户端发送一个FIN,用来关闭客户端到服务器的数据传送服务器的确认。其中终止标志位FIN=1,序列号seq=u.
  • 第二次挥手: 服务器收到这个FIN,它发送一个ACK,确认ack为收到的序号加一。
  • 第三次挥手: 关闭服务器到客户端的连接,发送一个FIN给客户端。
  • 第四次挥手: 客户端收到FIN后,并发回一个ACK报文确认,并将确认序号seq设置为收到序号加一。首先进行关闭的一方将执行主动关闭,而另一方执行被动关闭。

客户端发送FIN后,进入终止等待状态,服务器收到客户端连接释放报文段后,就立即给客户端发送确认,服务器就进入CLOSE_WAIT状态,此时TCP服务器进程就通知高层应用进程,因而从客户端到服务器的连接就释放了。此时是“半关闭状态”,即客户端不可以发送给服务器,服务器可以发送给客户端。
此时,如果服务器没有数据报发送给客户端,其应用程序就通知TCP释放连接,然后发送给客户端连接释放数据报,并等待确认。客户端发送确认后,进入TIME_WAIT状态,但是此时TCP连接还没有释放,然后经过等待计时器设置的2MSL后,才进入到CLOSED状态。

2.为什么需要2MSL时间?
首先,MSL即Maximum Segment Lifetime,就是最大报文生存时间,是任何报文在网络上的存在的最长时间,超过这个时间报文将被丢弃。《TCP/IP详解》中是这样描述的:MSL是任何报文段被丢弃前在网络内的最长时间。RFC 793中规定MSL为2分钟,实际应用中常用的是30秒、1分钟、2分钟等。

TCP的TIME_WAIT需要等待2MSL,当TCP的一端发起主动关闭,三次挥手完成后发送第四次挥手的ACK包后就进入这个状态,等待2MSL时间主要目的是:防止最后一个ACK包对方没有收到,那么对方在超时后将重发第三次握手的FIN包,主动关闭端接到重发的FIN包后可以再发一个ACK应答包。在TIME_WAIT状态时两端的端口不能使用,要等到2MSL时间结束才可以继续使用。当连接处于2MSL等待阶段时任何迟到的报文段都将被丢弃。

3.为什么是四次挥手,而不是三次或是五次、六次?
双方关闭连接要经过双方都同意。所以,首先是客服端给服务器发送FIN,要求关闭连接,服务器收到后会发送一个ACK进行确认。服务器然后再发送一个FIN,客户端发送ACK确认,并进入TIME_WAIT状态。等待2MSL后自动关闭。

总结:
(1)为了保证客户端发送的最后一个ACK报文段能够到达服务器。即最后一个确认报文可能丢失,服务器会超时重传,然后服务器发送FIN请求关闭连接,客户端发送ACK确认。一个来回是两个报文生命周期。

如果没有等待时间,发送完确认报文段就立即释放连接的话,服务器就无法重传,因此也就收不到确认,就无法按步骤进入CLOSED状态,即必须收到确认才能close。
(2)防止已经失效的连接请求报文出现在连接中。经过2MSL,在这个连续持续的时间内,产生的所有报文段就可以都从网络消失。

参考

  • TCP状态机-状态解析
  • TCP 为什么三次握手而不是两次握手(正解版)
  • TCP 为什么是三次握手,而不是两次或四次?
  • TCP为什么是三次握手和四次挥手
  • SDN手册

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

CentOS7开发环境搭建(1)

文章目录BIOS开启VT支持U盘安装系统(2019-03-11)CentOS DNS配置CentOS网络配置配置静态IP克隆虚拟机网卡名称变更 CentOS6.5时间配置安装VMWare-tools用户管理 (2019-03-15 7.6.1810)给一般账号 root 权限Samba服务配置安装必备软件获取本机公网ipyum源和第三方库源管理配置本地…

NS2相关学习——创建Xgraph的输出文件

经过前面学习代码的编写,这一部分,我们要学会如何进行分析,一个很直观的方式就是将结果图形化表示出来。 ns-allinone包的一部分是“xgraph”,一个绘图程序,可用于创建模拟结果的图形表示。 在本节中,将向…

An Energy-Efficient Ant-Based Routing Algorithm for Wireless Sensor Networks (无线传感网中基于蚁群算法的能量有效路由)2

牙说:接着上一篇继续写。论文标题:An Energy-Efficient Ant-Based Routing Algorithm forWireless Sensor Networks作者:Tiago Camilo, Carlos Carreto, Jorge S Silva, Fernando Boavida正文: 2、相关工作可以考虑无线传感器网络…

NS2仿真分析无线网络的攻击防御(1)

这个学期有个选题是NS2仿真分析无线网络的攻击防御,比较有意思的样子,现在来慢慢学一下这个是什么东西。 首先,还是一篇文章(老长老长了),还是全英文的,还是先来分析一下它到底在说什么&#x…

Java集合之HashMap源码分析

以下源码均为jdk1.7 HashMap概述 HashMap是基于哈希表的Map接口的非同步实现. 提供所有可选的映射操作, 并允许使用null值和null健. 此类不保证映射的顺序. 需要注意的是: HashMap不是同步的. 哈希表 哈希表定义: 哈希表是一种根据关键码去寻找值的数据映射结构, 该结构通…

NS2相关学习——可靠的MANET应用程序的Gossip协议分析

好久不写,应该努力啦!老师把这篇论文给了我,现在还不知道它在讲什么,来边翻译边学习吧! 文章链接:https://www.researchgate.net/publication/316844643_Analyzing_Gossip_Protocols_for_Reliable_MANET_Ap…

Java集合之LinkedList源码分析

概述 LinkedLIst和ArrayLIst一样, 都实现了List接口, 但其内部的数据结构不同, LinkedList是基于链表实现的(从名字也能看出来), 随机访问效率要比ArrayList差. 它的插入和删除操作比ArrayList更加高效, 但还是要遍历部分链表的指针才能移动到下标所指的位置, 只有在链表两头的…

lex和yacc环境配置

lex和yacc的使用很简单,但环境配置却是各种问题,本章说明lex和yacc在windows下的环境配置。 软件需求: 系统 win7-64位(win7-32, win8, win10全部通过) c编译器: vs2010(2008,2013,2015也全部通过) lex和yacc编译器&#xff1a…

Java集合之Vector源码分析

概述 Vector与ArrayLIst类似, 内部同样维护一个数组, Vector是线程安全的. 方法与ArrayList大体一致, 只是加上 synchronized 关键字, 保证线程安全, 下面就不具体分析源码了, 具体可以查看ArrayList中的源码分析. Vector源码分析 1.主要字段 2.构造函数 3.增删改查 其他方法…

Gossip协议的P2P会员管理

阅读此论文主要目的在于理解gossip协议及其背后的原理,此部分详细翻译,其余部分看时间 文章标题:Gossip协议的P2P会员管理 作者:Ayalvadi J. Ganesh, Anne-Marie Kermarrec, and Laurent Massoulie Abstract:基于…

Java集合之LinkedHashSet源码分析

概述 LinkedHashSet与HashSet类似, 不同的是LinkedHashSet底层使用LinkedHashMap维护元素插入的顺序. LinkedHashSet继承自HashSet, 只是重写了HashSet的构造方法, 初始化一个LinkedHashMap, 其他均与HashSet相同. LinkedHashSet构造方法 HashSet的构造方法: 以上几乎就是Li…

Java集合之ArrayList源码分析

概述 ArrayList可以理解为动态数组, 根据MSDN的说法, 就是Array的复杂版本. 与数组相比, 它的容量能动态增长. ArrayList是List接口的可变数组的实现. 实现了所有可选列表操作, 允许包括null在内的所有元素. 数组的特点, 查询快增删慢. 每个ArrayList实例都有一个容量, 该容…

Java集合之Hashtable源码分析

概述 Hashtable也是基于哈希表实现的, 与map相似, 不过Hashtable是线程安全的, Hashtable不允许 key或value为null. 成员变量 Hashtable的数据结构和HashMap一样, 采用 数组加链表的方式实现. 几个成员变量与HashMap一样: 方法 Hashtable的方法与HashMap基本一样, 只是 Ha…

视频质量检测中的TP、FP、Reacll、Precision

在看论文《Measuring Vedio QoE from Encrypted Traffic》的时候看到TP(True Positives)、FP(False Positives)、Precison、Recall的概念,这属于数据挖掘方面的内容,学习之后特来记录。 首先,下…

Java集合之LinkedHashMap源码分析

概述 HashMap是无序的, 即put的顺序与遍历顺序不保证一样. LinkedHashMap是HashMap的一个子类, 它通过重写父类的相关方法, 实现自己的功能. 它保留插入的顺序. 如果需要输出和输入顺序相同时, 就选用此类. LinkedHashMap原理 LinkedHashMap是如何保证输入输出顺序的呢? L…

Java集合之HashSet源码分析

概述 HashSet是基于HashMap来实现的, 底层采用HashMap的key来保存数据, 借此实现元素不重复, 因此HashSet的实现比较简单, 基本上的都是直接调用底层HashMap的相关方法来完成. HashSet的构造方法就是创建HashMap: 基本操作 1.添加操作 2.删除操作 3.迭代器 其他方法基本也是调…

三次握手wireshark抓包分析,成功握手和失败握手

转载之前:基于HTTP的视频流中,客户端有时会打开使用多条TCP与服务器连接,为了验证每一对话的sessionID是否相同,使用wireshark进行了抓包分析(抓到的都是加密的包,无卵用orz....),这…

Java 内部类及其原理

Java中实现内部类 内部类相信大家都用过很多次了,就不说它是怎么用的了。 内部类 1.成员内部类 需要注意的是, 当成员内部类拥有和外部类同名的成员变量或这方法时, 默认情况下访问的是内部类的成员, 如要访问外部类的同名成员&…

Java8 Lambda表达式

概述 lambda表达式, 是Java8中的一个新特性。可以理解为一个匿名函数。 lambda表达式可以理解为将一个函数浓缩为一行代码,使代码更加简洁紧凑。 lambda表达式语法: (parameters) -> statement; 或 (parameters) -> {statements;} 参…

Java8 方法引用

概述 方法引用是用来直接访问类或实例阴茎存在的方法或者构造方法.它需要由兼容的函数式接口(lambda表达式中用到的接口)构成的目标类型上下文. 有时候, 当我们想要实现一个函数式接口的方法, 但是已经由类实现了我们想要的功能, 这时可以使用方法引用来直接使用现有的功能实现…