(pytorch-深度学习系列)pytorch卷积层与池化层输出的尺寸的计算公式详解

pytorch卷积层与池化层输出的尺寸的计算公式详解

注:这篇blog写的不够完善,在后面的CNN网络分析padding和stride详细讲了公式,感兴趣的可以移步这里:卷积神经网络中的填充(padding)和步幅(stride)

要设计卷积神经网络的结构,必须匹配层与层之间的输入与输出的尺寸,这就需要较好的计算输出尺寸

先列出公式:

卷积后,池化后尺寸计算公式:
(图像尺寸-卷积核尺寸 + 2*填充值)/步长+1
(图像尺寸-池化窗尺寸 + 2*填充值)/步长+1

即:

卷积神将网络的计算公式为:
N=(W-F+2P)/S+1
其中
N:输出大小
W:输入大小
F:卷积核大小
P:填充值的大小
S:步长大小

例Conv2d(后面给出实例来讲解计算方法):

在这里插入图片描述
`
在这里插入图片描述

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, dilation=1, groups=1, bias=True)
卷积一层的几个参数:
in_channels=3:表示的是输入的通道数,RGB型的通道数是3.
out_channels:表示的是输出的通道数,设定输出通道数(这个是可以根据自己的需要来设置的)
kernel_size=12:表示卷积核的大小是12x12的,也就是上面的 F=12
stride=4:表示的是步长为4,也就是上面的S=4
padding=2:表示的是填充值的大小为2,也就是上面的P=2

实例:

cove1d:用于文本数据,只对宽度进行卷积,对高度不进行卷积
cove2d:用于图像数据,对宽度和高度都进行卷积

import torch
from torch.autograd import Variable
#torch.autograd提供了类和函数用来对任意标量函数进行求导。
import torch.nn as nn
import torch.nn.functional as F
class MNISTConvNet(nn.Module):def __init__(self):super(MNISTConvNet, self).__init__()'''
这是对继承自父类的属性进行初始化。而且是用父类的初始化方法来初始化继承的属性。
也就是说,子类继承了父类的所有属性和方法,父类属性自然会用父类方法来进行初始化。'''
#定义网络结构self.conv1 = nn.Conv2d(1, 10, 5)self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(10, 20, 5)self.pool2 = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(320, 50)self.fc2 = nn.Linear(50, 10)def forward(self, input):x = self.pool1(F.relu(self.conv1(input)))x = self.pool2(F.relu(self.conv2(x))).view(320)x = self.fc2(self.fc1(x))return xnet = MNISTConvNet()
print(net)
input = Variable(torch.randn(1, 1, 28, 28))
out = net(input)
print(out.size())

我们在这个实例中抽出网络结构部分:

        self.conv1 = nn.Conv2d(1, 10, 5)self.pool1 = nn.MaxPool2d(2, 2)self.conv2 = nn.Conv2d(10, 20, 5)self.pool2 = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(320, 50)self.fc2 = nn.Linear(50, 10)def forward(self, input):x = self.pool1(F.relu(self.conv1(input)))x = self.pool2(F.relu(self.conv2(x))).view(320)x = self.fc2(self.fc1(x))

网络结构为:

conv2d--maxpool2d--conv2d--maxpool2d--fullyconnect--fullyconnect

输入图片大小为:input = Variable(torch.randn(1, 1, 28, 28))
28*28的单通道图片,即:1*28*28

接下来,我们分层解析每一层网络的输入和输出:

(1)conv2d(1,10,5)

N:输出大小
W:输入大小	28*28
F:卷积核大小	5*5
P:填充值的大小	0默认值
S:步长大小	1默认值
N=(W-F+2P)/S+1=(28-5 + 2*0)/1 + 1 = 24
输出为:10*24*24

Conv2d(输入通道数, 输出通道数, kernel_size(长和宽)),当卷积核为方形时,只写一个就可以,卷积核不是方形时,长和宽都要写,如下:

self.conv1 = nn.Conv2d(2, 4, (5,2))

(2)MaxPool2d(2, 2)
MaxPool 最大池化层,池化层在卷积神经网络中的作用在于特征融合和降维。池化也是一种类似的卷积操作,只是池化层的所有参数都是超参数,是学习不到的。maxpooling有局部不变性而且可以提取显著特征的同时降低模型的参数,从而降低模型的过拟合。只提取了显著特征,而舍弃了不显著的信息,是的模型的参数减少了,从而一定程度上可以缓解过拟合的产生。

class torch.nn.MaxPool2d(kernel_size, stride=None, padding=0, dilation=1, return_indices=False, ceil_mode=False)
N:输出大小
W:输入大小	24*24
F:卷积核大小	5*5
P:填充值的大小	0默认值
S:步长大小	1默认值
N=(W-F+2P)/S+1=(24-2 + 2*0)/2 + 1 = 12
输出为:10*12*12

(3)conv2d(10,20,5)

N:输出大小
W:输入大小	12*12
F:卷积核大小	5*5
P:填充值的大小	0默认值
S:步长大小	1默认值
N=(W-F+2P)/S+1=(12-5 + 2*0)/1 + 1 = 8
输出为:20*8*8

(4)MaxPool2d(2, 2)

N:输出大小
W:输入大小	8*8
F:卷积核大小	5*5
P:填充值的大小	0默认值
S:步长大小	1默认值
N=(W-F+2P)/S+1=(8-2 + 2*0)/2 + 1 = 4
输出为:20*4*4

(5)fully-connect Linear(320, 50)

输入:20*4*4=320
输出:50

(6)fully-connect Linear(50, 10)

输入:50
输出:10

所以,整个实例的训练过程数据流动为:

    def forward(self, input):x = self.pool1(F.relu(self.conv1(input)))x = self.pool2(F.relu(self.conv2(x))).view(320)x = self.fc2(self.fc1(x))

激活函数Relu,在神经网络中的作用是:通过加权的输入进行非线性组合产生非线性决策边界
简单的来说就是增加非线性作用。
在深层卷积神经网络中使用激活函数同样也是增加非线性,主要是为了解决sigmoid函数带来的梯度消失问题。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/508016.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

idea创建springboot项目,一直在reading pom.xml

problem:遇到的问题 idea创建springboot项目,一直在reading pom.xml 解决方法有三种: (1)修改windows配置文件 c;\windows\System32\drivers\etc\hosts将12.0.0.1 localhost前的注释符号#去掉 (2&#x…

springboot 项目实战 基本框架搭建(IDEA)

springboot 项目实战 基本框架搭建(IDEA) IDEA下载 我使用的是破解的专业版IDEA,使用权一直到2089年: 下载IDEA: 下载processional版本,然后百度搜索激活码即可概率激活,如果你不成功就多找几个激活码 配…

使用IDEA 连接mysql数据库,执行sql指令

使用IDEA 连接mysql数据库,执行sql指令 1 配置项目的SQL依赖 首先参考这篇博文,创建springboot的基本框架 在创建项目的过程中,需要选择SQL相关的依赖,如下: SQL勾选:MySQL Driver,JDBC API …

thymeleaf There was an unexpected error (type=Internal Server Error, status=500).

thymeleaf There was an unexpected error (typeInternal Server Error, status500). 使用thymeleaf依赖&#xff0c;无法访问html文件&#xff0c;解决方法有以下几种可能&#xff1a; 1. 未加载thymeleaf依赖&#xff0c;打开pom.xml&#xff0c;加入依赖&#xff1a; <…

org.attoparser.ParseException: Could not parse as expression: “

Caused by: org.attoparser.ParseException: Could not parse as expression: " {field: ‘id’, title: ‘ID’, fixed: ‘left’, unresize: true, sort: true} , {field: ‘number’, title: ‘学号’, edit: ‘number’, sort: true} , {field: ‘name’, title: ‘姓…

(pytorch-深度学习系列)pytorch中backwards()函数对梯度的操作

backwards()函数对梯度的操作 对于一个新的tensor来说&#xff0c;梯度是空的&#xff1b;但当对这个tensor进行运算操作后&#xff0c;他就会拥有一个梯度&#xff1a; x torch.ones(2, 2, requires_gradTrue) print(x) print(x.grad_fn)y x 2 print(y) print(y.grad_fn)…

(pytorch-深度学习系列)pytorch实现线性回归

pytorch实现线性回归 1. 实现线性回归前的准备 线性回归输出是一个连续值&#xff0c;因此适用于回归问题。回归问题在实际中很常见&#xff0c;如预测房屋价格、气温、销售额等连续值的问题。 与回归问题不同&#xff0c;分类问题中模型的最终输出是一个离散值。我们所说的图…

(pytorch-深度学习系列)pytorch实现多层感知机(手动定义模型)对Fashion-MNIST数据集进行分类-学习笔记

pytorch实现多层感知机对Fashion-MNIST数据集进行分类&#xff08;手动定义模型&#xff09; 多层感知机&#xff1a; 多层感知机在单层神经网络的基础上引入了一到多个隐藏层&#xff08;hidden layer&#xff09;。隐藏层位于输入层和输出层之间。 输入和输出个数分别为4和…

(pytorch-深度学习系列)ResNet残差网络的理解-学习笔记

ResNet残差网络的理解 ResNet伴随文章 Deep Residual Learning for Image Recognition 诞生&#xff0c;该文章是MSRA何凯明团队在2015年ImageNet上使用的网络&#xff0c;在当年的classification、detection等比赛中&#xff0c;ResNet均获了第一名&#xff0c;这也导致了Res…

(pytorch-深度学习系列)卷积神经网络LeNet-学习笔记

卷积神经网络LeNet 先上图&#xff1a;LeNet的网络结构 卷积(6个5∗5的核)→降采样(池化)(2∗2的核&#xff0c;步长2)→卷积(16个5∗5的核)→降采样(池化)(2∗2的核&#xff0c;步长2)→全连接16∗5∗5→120→全连接120→84→全连接84→10\begin{matrix}卷积 \\ (6个5*5的核…

(pytorch-深度学习系列)深度卷积神经网络AlexNet

深度卷积神经网络AlexNet 文字过多&#xff0c;但是重点已经标出来了 背景 在LeNet提出后的将近20年里&#xff0c;神经网络一度被其他机器学习方法超越&#xff0c;如支持向量机。虽然LeNet可以在早期的小数据集上取得好的成绩&#xff0c;但是在更大的真实数据集上的表现并…

(pytorch-深度学习)包含并行连结的网络(GoogLeNet)

包含并行连结的网络&#xff08;GoogLeNet&#xff09; 在2014年的ImageNet图像识别挑战赛中&#xff0c;一个名叫GoogLeNet的网络结构大放异彩。它虽然在名字上向LeNet致敬&#xff0c;但在网络结构上已经很难看到LeNet的影子。GoogLeNet吸收了NiN中网络串联网络的思想&#…

(pytorch-深度学习)实现稠密连接网络(DenseNet)

稠密连接网络&#xff08;DenseNet&#xff09; ResNet中的跨层连接设计引申出了数个后续工作。稠密连接网络&#xff08;DenseNet&#xff09;与ResNet的主要区别在于在跨层连接上的主要区别&#xff1a; ResNet使用相加DenseNet使用连结 ResNet&#xff08;左&#xff09;…

(pytorch-深度学习)循环神经网络

循环神经网络 在nnn元语法中&#xff0c;时间步ttt的词wtw_twt​基于前面所有词的条件概率只考虑了最近时间步的n−1n-1n−1个词。如果要考虑比t−(n−1)t-(n-1)t−(n−1)更早时间步的词对wtw_twt​的可能影响&#xff0c;需要增大nnn。 这样模型参数的数量将随之呈指数级增长…

(pytorch-深度学习)使用pytorch框架nn.RNN实现循环神经网络

使用pytorch框架nn.RNN实现循环神经网络 首先&#xff0c;读取周杰伦专辑歌词数据集。 import time import math import numpy as np import torch from torch import nn, optim import torch.nn.functional as Fimport sys sys.path.append("..") device torch.d…

(pytorch-深度学习)通过时间反向传播

通过时间反向传播 介绍循环神经网络中梯度的计算和存储方法&#xff0c;即通过时间反向传播&#xff08;back-propagation through time&#xff09;。 正向传播和反向传播相互依赖。正向传播在循环神经网络中比较直观&#xff0c;而通过时间反向传播其实是反向传播在循环神经…

(pytorch-深度学习)门控循环单元(GRU)

门控循环单元&#xff08;GRU&#xff09; 循环神经网络中的梯度计算 当时间步数较大或者时间步较小时&#xff0c;循环神经网络的梯度较容易出现衰减或爆炸。虽然裁剪梯度可以应对梯度爆炸&#xff0c;但无法解决梯度衰减的问题。通常由于这个原因&#xff0c;循环神经网络在…

(pytorch-深度学习)长短期记忆(LSTM)

长短期记忆&#xff08;LSTM&#xff09; LSTM 中引入了3个门&#xff0c;即 输入门&#xff08;input gate&#xff09;遗忘门&#xff08;forget gate&#xff09;输出门&#xff08;output gate&#xff09;以及与隐藏状态形状相同的记忆细胞&#xff08;某些文献把记忆细…

(pytorch-深度学习)深度循环神经网络

深度循环神经网络 循环神经网络只有一个单向的隐藏层&#xff0c;在深度学习应用里&#xff0c;我们通常会用到含有多个隐藏层的循环神经网络&#xff0c;也称作深度循环神经网络。 下图演示了一个有LLL个隐藏层的深度循环神经网络&#xff0c;每个隐藏状态不断传递至当前层的…

(pytorch-深度学习)双向循环神经网络

双向循环神经网络 一般&#xff0c;我们认为循环神经网络模型都是假设当前时间步是由前面的较早时间步的序列决定的&#xff0c;因此它们都将信息通过隐藏状态从前往后传递。 有时候&#xff0c;当前时间步也可能由后面时间步决定。 例如&#xff0c;当我们写下一个句子时&…