Python Opencv实践 - 图像直方图均衡化

import cv2 as cv
import numpy as np
import matplotlib.pyplot as pltimg = cv.imread("../SampleImages/pomeranian.png", cv.IMREAD_COLOR)
print(img.shape)#图像直方图计算
#cv.calcHist(images, channels, mask, histSize, ranges, hist, accumulate)
#images:原图像(图像格式为 uint8 或 float32)。当传入函数时应该 用中括号 [] 括起来,例如:[img]。
#channels:同样需要用中括号括起来,它会告诉函数我们要统计那幅图 像的直方图。如果输入图像是灰度图,它的值就是 [0];如果是彩色图像 的话,传入的参数可以是 [0],[1],[2] 它们分别对应着通道 B,G,R。
#mask: 掩模图像。要统计整幅图像的直方图就把它设为 None。但是如 果你想统计图像某一部分的直方图的话,你就需要制作一个掩模图像,并 使用它。
#histSize:BIN 的数目。也应该用中括号括起来,例如:[256]。
#ranges: 像素值范围,通常为 [0,256]
#hist:是一个 256x1 的数组作为返回值,每一个值代表了与次灰度值对应的像素点数目。
#accumulate:是一个布尔值,用来表示直方图是否叠加。
#参考资料:https://blog.csdn.net/yukinoai/article/details/87900860
hist_b = cv.calcHist([img], [0], None, [256], [0,256])
hist_g = cv.calcHist([img], [1], None, [256], [0,256])
hist_r = cv.calcHist([img], [2], None, [256], [0,256])
#显示图像
fig,axes = plt.subplots(nrows=2, ncols=2, figsize=(10,10), dpi=100)
axes[0][0].imshow(img[:,:,::-1])
axes[0][0].set_title("Original")
axes[0][1].set_title("Original Histogram")
axes[0][1].plot(hist_b, color='b')
axes[0][1].plot(hist_g, color='g')
axes[0][1].plot(hist_r, color='r')#彩色图像直方图均衡化
#cv.equalizeHist(src)
#参考资料:https://blog.csdn.net/qq_37701443/article/details/103564379
def RGBImageHistEqualize(src):hsv = cv.cvtColor(src, cv.COLOR_RGB2HSV)channels = cv.split(hsv)#对亮度通道进行直方图均衡化cv.equalizeHist(channels[2], channels[2])hsv = cv.merge(channels)src = cv.cvtColor(hsv, cv.COLOR_HSV2RGB)return src
img_hist_equalized = RGBImageHistEqualize(img)
hist_equalized_b = cv.calcHist([img_hist_equalized], [0], None, [256], [0,256])
hist_equalized_g = cv.calcHist([img_hist_equalized], [1], None, [256], [0,256])
hist_equalized_r = cv.calcHist([img_hist_equalized], [2], None, [256], [0,256])#显示直方图均衡化后的结果
axes[1][0].imshow(img_hist_equalized[:,:,::-1])
axes[1][0].set_title("Equalized")
axes[1][1].set_title("Equalized Histogram")
axes[1][1].plot(hist_equalized_b, color='b')
axes[1][1].plot(hist_equalized_g, color='g')
axes[1][1].plot(hist_equalized_r, color='r')

 

 

 

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50637.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

ModStartBlog v8.0.0 博客归档页面,部分组件升级

ModStart 是一个基于 Laravel 模块化极速开发框架。模块市场拥有丰富的功能应用,支持后台一键快速安装,让开发者能快的实现业务功能开发。 系统完全开源,基于 Apache 2.0 开源协议。 功能特性 丰富的模块市场,后台一键快速安装会…

C语言入门 Day_9 条件判断

目录 前言: 1.if判断 2.else判断 3.易错点 4.思维导图 前言: 我们知道比较运算和逻辑运算都会得到一个布尔型的数据,要么为真(true),要么为假(false)。 今天我们来学习真和假在…

面试热题(复原ip地址)

有效 IP 地址 正好由四个整数(每个整数位于 0 到 255 之间组成,且不能含有前导 0),整数之间用 . 分隔。 例如:"0.1.2.201" 和 "192.168.1.1" 是 有效 IP 地址,但是 "0.011.255.24…

pyqt5-自定义停靠栏头部

import sys from PyQt5.QtWidgets import * from PyQt5.QtCore import * from PyQt5.QtGui import *class CustomDock(QDockWidget):def __init__(self, title: str, parentNone):super().__init__(title, parent)"""停靠栏的头部"""h_layout Q…

行式存储与列式存储

1.概述 数据处理大致可分为两大类,联机事务处理OLTP(on-line transaction processing) 和联机分析处理OLAP(on-line analytical processing)。 OLTP是传统关系型数据库的主要应用,用来执行一些基本的、日常的事务处理,比如数据库记录的增、删…

uniapp微信小程序点击右上角菜单分享功能权限配置

个人项目地址: SubTopH前端开发个人站 (自己开发的前端功能和UI组件,一些有趣的小功能,感兴趣的伙伴可以访问,欢迎提出更好的想法,私信沟通,网站属于静态页面) SubTopH前端开发个人站…

threejs贴图系列(一)canvas贴图

threejs不仅支持各种texture的导入生成贴图,还可以利用canvas绘制图片作为贴图。这就用到了CanvasTexture,它接受一个canas对象。只要我们绘制好canvas,就可以作为贴图了。这里我们利用一张图片来实现这个效果。 基础代码: impo…

开始MySQL探索——数据库概述

计算机语言 计算机语言概述 计算机语言(Computer Language)可以简单的理解为一种计算机和人都能识别的语言。 机器语言 汇编语言 高级语言 机器语言 汇编语言 高级语言 SQL语言基础 SQL的概述 SQL全称:Structured Query Language&…

无涯教程-PHP - preg_match()函数

preg_match() - 语法 int preg_match (string pattern, string string [, array pattern_array], [, int $flags [, int $offset]]]); preg_match()函数在字符串中搜索pattern,如果存在pattern,则返回true,否则返回false。 如果提供了可选…

Ansible 临时命令搭建安装仓库

创建一个名为/ansible/yum.sh 的 shell 脚本,该脚本将使用 Ansible 临时命令在各个受管节点上安装 yum 存储库. 存储库1: 存储库的名称为 EX294_BASE 描述为 EX294 base software 基础 URL 为 http://content/rhel8.0/x86_64/dvd/BaseOS GPG 签名检查为…

11_Redis经典五大类型源码及底层实现

Redis经典五大类型源码及底层实现 一、Redis数据类型的底层数据结构 SDS动态字符串双向链表压缩列表 zpilist哈希表 hashtable调表 skiplist整数集合 intset快速列表 quicklist紧凑列表 listpack 二、Redis源码地址 Github:https://github.com/redis/redis 三、…

java 项目运行时,后端控制台出现空指针异常---java.lang.NullPointerException

项目场景: 提示:这里简述项目背景: 场景如下: java 项目运行时,后端控制台出现如下图所示报错信息:— 问题描述 提示:这里描述项目中遇到的问题: java 项目运行时,后…

Elasticsearch 常见的简单查询

查看es中有哪些索引 请求方式:GET 请求地址:http://localhost:9200 /_cat/indices?v 参数:无 结果: 查看索引全部数据 请求方式:GET 请求地址:http://localhost:9200/index-2023-08/_search 参数&a…

mongodb 数据库管理(数据库、集合、文档)

目录 一、数据库操作 1、创建数据库 2、删除数据库 二、集合操作 1、创建集合 2、删除集合 三、文档操作 1、创建文档 2、 插入文档 3、查看文档 4、更新文档 1)update() 方法 2)replace() 方法 一、数据库操作 1、创建数据库 创建数据库…

使用R语言绘制折线图

写在前面 昨天我们分享了使用Python绘制折线图的教程,跟着NC学作图 | 使用python绘制折线图,考虑到很多同学基本不使用Python绘图。那么,我们也使用R语言复现此图形。 此外,在前期的教程中,我们基本没有分享过折线图的教程。因此,我们在这里也制作一期关于折线图的教程。…

使用VisualStudio制作上位机(二)

文章目录 使用VisualStudio制作上位机(二)第三部分:GUI内部函数设计使用VisualStudio制作上位机(二) Author:YAL 第三部分:GUI内部函数设计 事件添加 给窗体或窗体按钮相关的操作添加事件有两种方式,事件的名字直白的表面了这是什么事件。 直接双击界面,自动生成窗…

跨境电商系统开发:打破国界壁垒,拓展全球市场

拓展全球市场的必然选择 随着国际贸易水平的不断提升和全球市场的日益开放,跨境电商作为一种高效的贸易模式,受到了越来越多电商企业的关注和青睐。跨境电商不仅可以打破国界壁垒和时差限制,还可以在全球市场上实现销售的拓展,带来…

7-42 整型关键字的散列映射

题目链接:这里 题目大意:就是写一个线性探测的散列 然鹅,我不会写(?)我一共错了两个地方 有冲突的情况下,就是线性探查然后往后找,但是我之前写的是t,应该是t (t1)%p;…在有重复关键字的时候&#xff0c…

新功能:部署远程办公支持第三方授权登录

随着业务的发展和信息管理的完善,企业的应用系统也逐渐增多,每个软件系统使用各自的软件数据,独立的用户管理模式,不仅会增加部署成本,对于企业应用平台化管理也是不小的挑战。 对于企业而言,如何实现应用系…

Xamarin.Android实现手写板的功能

目录 1、背景说明2、实现效果3、代码实现3.1 整体思路3.2 核心绘画类-PaintView.cs3.3 对话框类-WritePadDialog.cs3.4 前端实现类-MainActivity3.5 布局文件3.5.1 write_pad.xml3.5.2 activity_main布局文件 4、知识总结5、代码下载6、参考资料 1、背景说明 在实际使用过程中…