作者:张振伟来源:https://zhangzw.com/20190521.html
假设遇到这样一个问题:一个网站有 20 亿 url 存在一个黑名单中,这个黑名单要怎么存?若此时随便输入一个 url,你如何快速判断该 url 是否在这个黑名单中?并且需在给定内存空间(比如:500M)内快速判断出。
可能很多人首先想到的会是使用 HashSet,因为 HashSet基于 HashMap,理论上时间复杂度为:O(1)。达到了快速的目的,但是空间复杂度呢?URL字符串通过Hash得到一个Integer的值,Integer占4个字节,那20亿个URL理论上需要:20亿*4/1024/1024/1024=7.45G的内存,不满足空间复杂度的要求。
这里就引出本文要介绍的“布隆过滤器”。
# 何为布隆过滤器
百科上对布隆过滤器的介绍是这样的:
布隆过滤器(Bloom Filter)是1970年由布隆提出的。它实际上是一个很长的二进制向量和一系列随机映射函数。布隆过滤器可以用于检索一个元素是否在一个集合中。它的优点是空间效率和查询时间都比一般的算法要好的多,缺点是有一定的误识别率和删除困难。
是不是描述的比较抽象?那就直接了解其原理吧!
还是以上面的例子为例:
哈希算法得出的Integer的哈希值最大为:Integer.MAX_VALUE=2147483647,意思就是任何一个URL的哈希都会在0~2147483647之间。
那么可以定义一个2147483647长度的byte数组,用来存储集合所有可能的值。为了存储这个byte数组,系统只需要:2147483647/8/1024/1024=256M。
比如:某个URL(X)的哈希是2,那么落到这个byte数组在第二位上就是1,这个byte数组将是:000….00000010,重复的,将这20亿个数全部哈希并落到byte数组中。
判断逻辑
如果byte数组上的第二位是1,那么这个URL(X)可能存在。为什么是可能?因为有可能其它URL因哈希碰撞哈希出来的也是2,这就是误判。
但是如果这个byte数组上的第二位是0,那么这个URL(X)就一定不存在集合中。
多次哈希
为了减少因哈希碰撞导致的误判概率,可以对这个URL(X)用不同的哈希算法进行N次哈希,得出N个哈希值,落到这个byte数组上,如果这N个位置没有都为1,那么这个URL(X)就一定不存在集合中。
# Guava的BloomFilter
Guava框架提供了布隆过滤器的具体实现:BloomFilter,使得开发不用再自己写一套算法的实现。
# 创建BloomFilter
BloomFilter提供了几个重载的静态 create方法来创建实例:
最终还是调用:
BloomFilter里byte数组的空间大小由 expectedInsertions, fpp参数决定,见方法:
真正的byte数组维护在类:BitArray中。
# 使用:
最后通过:put和 mightContain方法,添加元素和判断元素是否存在。
# 算法特点
1、因使用哈希判断,时间效率很高。空间效率也是其一大优势。
2、有误判的可能,需针对具体场景使用。
3、因为无法分辨哈希碰撞,所以不是很好做删除操作。
# 使用场景
1、黑名单
2、URL去重
3、单词拼写检查
4、Key-Value缓存系统的Key校验
5、ID校验,比如订单系统查询某个订单ID是否存在,如果不存在就直接返回。