2023年8月22日OpenAI推出了革命性更新:ChatGPT-3.5 Turbo微调和API更新,为您的业务量身打造AI模型

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁
🦄 博客首页——猫头虎的博客🎐
🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

文章目录

  • ChatGPT-3.5 Turbo微调功能及API更新详解
  • 摘要:
    • 1. GPT-3.5 Turbo微调功能简介
    • 2. 微调的定义和应用
    • 3. 微调的关键点
    • 4. 微调的步骤
    • 5. 支持微调的模型
    • 6. 微调的成本
    • 总结
    • 参考资料:
  • 原创声明

在这里插入图片描述


ChatGPT-3.5 Turbo微调功能及API更新详解

摘要:


2023年8月22日OpenAI推出了GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的业务需求。这项更新旨在提高模型的灵活性和效率。微调是一种特殊的模型训练技术,它在预训练模型的基础上进行进一步的优化,使模型更好地适应特定的业务场景。开发者可以使用微调来改进模型的指导能力、输出格式和语调,以更好地满足业务需求。微调还与其他技术如提示工程和信息检索相结合,提供更强大的功能。


1. GPT-3.5 Turbo微调功能简介

  • OpenAI已推出GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的用例。
  • GPT-4的微调功能预计将在今年秋天发布。
  • 早期测试显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能可以与GPT-4相匹配,甚至超越。

GPT-3.5 Turbo的微调功能是OpenAI为开发者提供的一项新功能,旨在帮助他们更好地定制模型,以满足特定的业务需求。这项更新的背后有一个核心的目标:使模型更加灵活和高效。开发者不再受限于预训练模型的固有能力,而是可以根据自己的需求对模型进行微调,从而获得更好的性能。

此外,OpenAI还计划在今年秋天推出GPT-4的微调功能。这意味着开发者将有更多的选择和机会来优化他们的模型。早期的测试数据显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能甚至可以超越GPT-4的基本功能。这为开发者提供了一个强大的工具,帮助他们在各种任务上获得更好的结果。

2. 微调的定义和应用

  • 微调是一种在预训练模型的基础上,对特定任务进行深度训练的方法。
  • 微调的目的是使模型在特定业务场景上的性能更好。
  • 例如,可以使用大量的法律数据集对预训练的GPT3.5模型进行微调,使其在法律领域的表现更加出色。

微调是一种特殊的模型训练技术,它允许开发者在预训练模型的基础上进行进一步的优化。这种方法的核心思想是利用大量的数据对模型进行预训练,然后使用特定任务的数据对模型进行微调。这样,模型可以更好地适应特定的业务场景和需求。

例如,如果一个公司希望使用GPT-3.5模型来处理法律相关的问题,他们可以使用大量的法律数据对模型进行微调。这样,模型就可以更好地理解和处理法律问题,为用户提供更准确和专业的答案。

微调不仅仅是对模型参数的简单调整。它是一个复杂的过程,需要深入的理解和大量的实验。但是,得益于OpenAI提供的工具和指导,开发者可以更容易地进行微调,获得更好的结果。

3. 微调的关键点

  • 微调可以提供比提示更高质量的结果。
  • 微调允许在一个提示中训练更多的示例。
  • 由于提示更短,微调可以节省代币。
  • 微调可以降低延迟请求。

微调的过程中有几个关键点需要注意。首先,微调的目的是提高模型的性能,而不是简单地改变其行为。这意味着开发者应该明确他们的目标,并选择合适的数据和策略来达到这些目标。

其次,微调是一个迭代的过程。这意味着开发者可能需要多次进行微调,才能获得满意的结果。每次微调都应该基于前一次的结果,以及对模型的深入理解。

最后,微调是一个需要时间和资源的过程。尽管OpenAI提供了许多工具和资源来帮助开发者,但他们仍然需要投入大量的时间和精力来获得最佳的结果。

4. 微调的步骤

  1. 准备并上传训练数据。
  2. 训练一个新的精调模型。
  3. 使用您的精调模型。

微调的过程可以分为几个步骤。首先,开发者需要准备和上传训练数据。这些数据应该是与特定任务相关的,可以帮助模型更好地理解和处理这些任务。

接下来,开发者需要训练一个新的精调模型。这一步骤涉及到对模型参数的调整,以及对模型的进一步优化。

最后,开发者可以使用他们的精调模型来处理实际的任务。这一步骤需要对模型的性能进行测试和评估,以确保它可以满足业务的需求。

5. 支持微调的模型

  • gpt-3.5-turbo-0613 (推荐)
  • babbage-002
  • davinci-002
  • 在这里插入图片描述

6. 微调的成本

  • 初始训练成本:每1000个标记 $0.008
  • 使用输入:每1000个令牌 $0.012
  • 使用输出:每1000个令牌 $0.016

总结

OpenAI最近发布了GPT-3.5 Turbo的微调功能,这是开发者期待已久的一个重要更新。这项更新允许开发者使用自己的数据来定制模型,使其更好地适应特定的用例。早期的测试结果显示,经过微调的GPT-3.5 Turbo在某些狭窄的任务上的性能甚至可以匹配或超越GPT-4的基本功能。

自GPT-3.5 Turbo发布以来,许多开发者和企业都表示希望能够定制模型,为他们的用户创造独特和差异化的体验。现在,开发者可以进行有监督的微调,使模型更好地为他们的用例服务。

在私有测试阶段,微调的客户已经能够在常见的用例中显著提高模型的性能。例如,微调可以使模型更好地遵循指令,如使输出简洁或始终以给定的语言响应。此外,微调还可以提高模型的输出格式的一致性,这对于需要特定响应格式的应用程序至关重要。

微调还有其他的优点,如提高性能、缩短提示长度、处理更多的令牌等。当与其他技术如提示工程、信息检索和函数调用结合使用时,微调的效果最为显著。


参考资料:

  • OpenAI Platform
  • OpenAI Blog
  • 掘金文章

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux面试笔试题(6)

91、6块300G的硬盘做raid5,新的设备容量是多大(C) A 900G B 1800G C 1500G D 300G 6300G−300G 1500G 由于一块硬盘用于奇偶校验,所以设备容量将是1500G. Raid 5是一种磁盘阵列,将数据分散到多个硬盘上以提高性能和可…

聚合函数与窗口函数

聚合函数 回答一 聚合函数(Aggregate Functions)是SQL中的函数,用于对一组数据进行计算,并返回单个结果。聚合函数通常用于统计和汇总数据,包括计算总和、平均值、计数、最大值和最小值等。 以下是一些常见的聚合函…

Xmake v2.8.2 发布,官方包仓库数量突破 1k

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…

Oracle-day1:scott用户、查询、取整、截取、模糊查询、别名——23/8/23

整理一下第一天软件测试培训的知识点 1、scott用户 -- 以system管理员登录锁定scott用户 alter user scott account lock;-- 以system管理员登录解锁scott用户 alter user scott account unlock;-- 以system管理员用户设置scott用户密码 alter user scott identfied by tiger…

libdrm全解析一 —— 总述

本文参考以下博文: Linux libdrm代码完全解析 LIBDRM使用 最简单的DRM应用程序 (single-buffer) Linux libdrm库入门教程 10. DRM图形显示框架 LIBDRM 特此致谢! 一、介绍 BLFS中给出的介绍 libdrm提供了一个用户空间库&…

Sulfo-CY3 DBCO在生物传感和靶向标记方面的优势

​欢迎来到星戈瑞荧光stargraydye!小编带您盘点: Sulfo-Cyanine3 DBCO在生物传感和靶向标记方面具有许多优势,使其成为生物医学研究中的工具。以下是Sulfo-Cyanine3 DBCO在生物传感和靶向标记方面的主要优势: **1. 特异性&#x…

PostgreSQL-研究学习-介绍与安装

PostgreSQL-预研 是个很厉害的数据库的样子 ψ(*`ー)ψ 官方文档:http://www.postgres.cn/docs/12/ 总的结论和备注 PgSQL 支持对JSON的支持很强大,以及提供了很多数学几何相关的数据类型【例:点,线条,几何…

【面试题】:axios二次封装都进行了哪些配置以及如果项目里面有两个baseURL你怎么解决?

一.axios的概念 Axios 是一个基于 promise 网络请求库,作用于node.js 和浏览器中。 它是 isomorphic 的(即同一套代码可以运行在浏览器和node.js中)。在服务端它使用原生 node.js http 模块, 而在客户端 (浏览端) 则使用 XMLHttpRequests。 二.axios的特点&#xf…

动态调用python类和函数

遇到一个需求,需要尽可能的尝试触发python模块里的行为,比如函数,类实例这样,感觉和java里的反射有点像;通过调研发现python里有getattr这个方法,类似于java里的反射机制,可以通过字符串比较方便…

5.11 汇编语言:仿写IF条件语句

条件语句,也称为IF-ELSE语句,是计算机编程中的一种基本控制结构。它允许程序根据条件的真假来执行不同的代码块。条件语句在处理决策和分支逻辑时非常有用。一般来说,条件语句由IF关键字、一个条件表达式、一个或多个代码块以及可选的ELSE关键…

java开源 VR全景商城 saas商城 b2b2c商城 o2o商城 积分商城 秒杀商城 拼团商城 分销商城 短视频商城 小程序商城搭建 bbc

​ 1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前…

回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效…

go gorm一对多has many

has many 与另一个模型建立了一对多的连接。 不同于 has one,拥有者可以有零或多个关联模型。 例如,您的应用包含 user 和 credit card 模型,且每个 user 可以有多张 credit card。 定义model // User 有多张 CreditCard,UserI…

python中的matplotlib画直方图(数据分析与可视化)

python中的matplotlib画直方图(数据分析与可视化) import numpy as np import pandas as pd import matplotlib.pyplot as pltpd.set_option("max_columns",None) plt.rcParams[font.sans-serif][SimHei] plt.rcParams[axes.unicode_minus]Fa…

TCP缓冲区参数调优

1、系统原值查询 [lybadmin autopush]$ cat /proc/sys/net/core/rmem_max 4194304 [lybadmin autopush]$ cat /proc/sys/net/core/wmem_max 1048576 [lybadmin autopush]$ cat /proc/sys/net/ipv4/tcp_rmem 4096 87380 4194304 [lybadmin autopush]$ cat /proc/sys/net/ip…

centos8安装mysql

1.首先用finalShell远程连接到服务器 2.如果服务器之前安装过mysql请先卸载,我这里是用yum安装的,现在通过yum去卸载 yum remove -y mysql find / -name mysql //找到残留的文件,再通过rm -rf去删除对应的文件3.下面正式开始安装 (1&#…

基于微信小程序+Springboot校园二手商城系统设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、目前专注于大学生项目实战开发,讲解,毕业答疑辅导✌ 🍅文末获取源码联系🍅 👇&#x1f3…

使用 OpenAI GPT 模型的最佳实践

推荐:使用NSDT场景编辑器助你快速搭建可二次编辑的3D应用场景 为了帮助用户获得最佳输出,OpenAI 提供了使用 GPT 模型的最佳实践。这来自体验,因为许多用户不断尝试使用此模型并找到了最有效的方法。 在本文中,我将总结使用 Ope…

分数规划(二分)

链接:登录—专业IT笔试面试备考平台_牛客网 来源:牛客网 题目描述 小咪是一个土豪手办狂魔,这次他去了一家店,发现了好多好多(n个)手办,但他是一个很怪的人,每次只想买k个手办&a…

JavaSE-21 【Stream流】

1 Stream的介绍 1.1 概念 stream流操作是Java 8提供一个重要新特性,它允许开发人员以声明性方式处理集合,其核心类库主要改进了对集合类的 API和新增Stream操作。Stream类中每一个方法都对应集合上的一种操作。将真正的函数式编程引入到Java中&#xf…