2023年8月22日OpenAI推出了革命性更新:ChatGPT-3.5 Turbo微调和API更新,为您的业务量身打造AI模型

🌷🍁 博主猫头虎 带您 Go to New World.✨🍁
🦄 博客首页——猫头虎的博客🎐
🐳《面试题大全专栏》 文章图文并茂🦕生动形象🦖简单易学!欢迎大家来踩踩~🌺
🌊 《IDEA开发秘籍专栏》学会IDEA常用操作,工作效率翻倍~💐
🌊 《100天精通Golang(基础入门篇)》学会Golang语言,畅玩云原生,走遍大小厂~💐

🪁🍁 希望本文能够给您带来一定的帮助🌸文章粗浅,敬请批评指正!🍁🐥

文章目录

  • ChatGPT-3.5 Turbo微调功能及API更新详解
  • 摘要:
    • 1. GPT-3.5 Turbo微调功能简介
    • 2. 微调的定义和应用
    • 3. 微调的关键点
    • 4. 微调的步骤
    • 5. 支持微调的模型
    • 6. 微调的成本
    • 总结
    • 参考资料:
  • 原创声明

在这里插入图片描述


ChatGPT-3.5 Turbo微调功能及API更新详解

摘要:


2023年8月22日OpenAI推出了GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的业务需求。这项更新旨在提高模型的灵活性和效率。微调是一种特殊的模型训练技术,它在预训练模型的基础上进行进一步的优化,使模型更好地适应特定的业务场景。开发者可以使用微调来改进模型的指导能力、输出格式和语调,以更好地满足业务需求。微调还与其他技术如提示工程和信息检索相结合,提供更强大的功能。


1. GPT-3.5 Turbo微调功能简介

  • OpenAI已推出GPT-3.5 Turbo的微调功能,允许开发者使用自己的数据进行模型定制,以适应特定的用例。
  • GPT-4的微调功能预计将在今年秋天发布。
  • 早期测试显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能可以与GPT-4相匹配,甚至超越。

GPT-3.5 Turbo的微调功能是OpenAI为开发者提供的一项新功能,旨在帮助他们更好地定制模型,以满足特定的业务需求。这项更新的背后有一个核心的目标:使模型更加灵活和高效。开发者不再受限于预训练模型的固有能力,而是可以根据自己的需求对模型进行微调,从而获得更好的性能。

此外,OpenAI还计划在今年秋天推出GPT-4的微调功能。这意味着开发者将有更多的选择和机会来优化他们的模型。早期的测试数据显示,经过微调的GPT-3.5 Turbo在某些特定任务上的性能甚至可以超越GPT-4的基本功能。这为开发者提供了一个强大的工具,帮助他们在各种任务上获得更好的结果。

2. 微调的定义和应用

  • 微调是一种在预训练模型的基础上,对特定任务进行深度训练的方法。
  • 微调的目的是使模型在特定业务场景上的性能更好。
  • 例如,可以使用大量的法律数据集对预训练的GPT3.5模型进行微调,使其在法律领域的表现更加出色。

微调是一种特殊的模型训练技术,它允许开发者在预训练模型的基础上进行进一步的优化。这种方法的核心思想是利用大量的数据对模型进行预训练,然后使用特定任务的数据对模型进行微调。这样,模型可以更好地适应特定的业务场景和需求。

例如,如果一个公司希望使用GPT-3.5模型来处理法律相关的问题,他们可以使用大量的法律数据对模型进行微调。这样,模型就可以更好地理解和处理法律问题,为用户提供更准确和专业的答案。

微调不仅仅是对模型参数的简单调整。它是一个复杂的过程,需要深入的理解和大量的实验。但是,得益于OpenAI提供的工具和指导,开发者可以更容易地进行微调,获得更好的结果。

3. 微调的关键点

  • 微调可以提供比提示更高质量的结果。
  • 微调允许在一个提示中训练更多的示例。
  • 由于提示更短,微调可以节省代币。
  • 微调可以降低延迟请求。

微调的过程中有几个关键点需要注意。首先,微调的目的是提高模型的性能,而不是简单地改变其行为。这意味着开发者应该明确他们的目标,并选择合适的数据和策略来达到这些目标。

其次,微调是一个迭代的过程。这意味着开发者可能需要多次进行微调,才能获得满意的结果。每次微调都应该基于前一次的结果,以及对模型的深入理解。

最后,微调是一个需要时间和资源的过程。尽管OpenAI提供了许多工具和资源来帮助开发者,但他们仍然需要投入大量的时间和精力来获得最佳的结果。

4. 微调的步骤

  1. 准备并上传训练数据。
  2. 训练一个新的精调模型。
  3. 使用您的精调模型。

微调的过程可以分为几个步骤。首先,开发者需要准备和上传训练数据。这些数据应该是与特定任务相关的,可以帮助模型更好地理解和处理这些任务。

接下来,开发者需要训练一个新的精调模型。这一步骤涉及到对模型参数的调整,以及对模型的进一步优化。

最后,开发者可以使用他们的精调模型来处理实际的任务。这一步骤需要对模型的性能进行测试和评估,以确保它可以满足业务的需求。

5. 支持微调的模型

  • gpt-3.5-turbo-0613 (推荐)
  • babbage-002
  • davinci-002
  • 在这里插入图片描述

6. 微调的成本

  • 初始训练成本:每1000个标记 $0.008
  • 使用输入:每1000个令牌 $0.012
  • 使用输出:每1000个令牌 $0.016

总结

OpenAI最近发布了GPT-3.5 Turbo的微调功能,这是开发者期待已久的一个重要更新。这项更新允许开发者使用自己的数据来定制模型,使其更好地适应特定的用例。早期的测试结果显示,经过微调的GPT-3.5 Turbo在某些狭窄的任务上的性能甚至可以匹配或超越GPT-4的基本功能。

自GPT-3.5 Turbo发布以来,许多开发者和企业都表示希望能够定制模型,为他们的用户创造独特和差异化的体验。现在,开发者可以进行有监督的微调,使模型更好地为他们的用例服务。

在私有测试阶段,微调的客户已经能够在常见的用例中显著提高模型的性能。例如,微调可以使模型更好地遵循指令,如使输出简洁或始终以给定的语言响应。此外,微调还可以提高模型的输出格式的一致性,这对于需要特定响应格式的应用程序至关重要。

微调还有其他的优点,如提高性能、缩短提示长度、处理更多的令牌等。当与其他技术如提示工程、信息检索和函数调用结合使用时,微调的效果最为显著。


参考资料:

  • OpenAI Platform
  • OpenAI Blog
  • 掘金文章

原创声明

======= ·

  • 原创作者: 猫头虎

作者wx: [ libin9iOak ]

学习复习

本文为原创文章,版权归作者所有。未经许可,禁止转载、复制或引用。

作者保证信息真实可靠,但不对准确性和完整性承担责任

未经许可,禁止商业用途。

如有疑问或建议,请联系作者。

感谢您的支持与尊重。

点击下方名片,加入IT技术核心学习团队。一起探索科技的未来,共同成长。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50309.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Linux面试笔试题(6)

91、6块300G的硬盘做raid5,新的设备容量是多大(C) A 900G B 1800G C 1500G D 300G 6300G−300G 1500G 由于一块硬盘用于奇偶校验,所以设备容量将是1500G. Raid 5是一种磁盘阵列,将数据分散到多个硬盘上以提高性能和可…

Xmake v2.8.2 发布,官方包仓库数量突破 1k

Xmake 是一个基于 Lua 的轻量级跨平台构建工具。 它非常的轻量,没有任何依赖,因为它内置了 Lua 运行时。 它使用 xmake.lua 维护项目构建,相比 makefile/CMakeLists.txt,配置语法更加简洁直观,对新手非常友好&#x…

libdrm全解析一 —— 总述

本文参考以下博文: Linux libdrm代码完全解析 LIBDRM使用 最简单的DRM应用程序 (single-buffer) Linux libdrm库入门教程 10. DRM图形显示框架 LIBDRM 特此致谢! 一、介绍 BLFS中给出的介绍 libdrm提供了一个用户空间库&…

PostgreSQL-研究学习-介绍与安装

PostgreSQL-预研 是个很厉害的数据库的样子 ψ(*`ー)ψ 官方文档:http://www.postgres.cn/docs/12/ 总的结论和备注 PgSQL 支持对JSON的支持很强大,以及提供了很多数学几何相关的数据类型【例:点,线条,几何…

java开源 VR全景商城 saas商城 b2b2c商城 o2o商城 积分商城 秒杀商城 拼团商城 分销商城 短视频商城 小程序商城搭建 bbc

​ 1. 涉及平台 平台管理、商家端(PC端、手机端)、买家平台(H5/公众号、小程序、APP端(IOS/Android)、微服务平台(业务服务) 2. 核心架构 Spring Cloud、Spring Boot、Mybatis、Redis 3. 前…

回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图) 目录 回归预测 | MATLAB实现BES-SVM秃鹰搜索优化算法优化支持向量机多输入单输出回归预测(多指标,多图)效…

python中的matplotlib画直方图(数据分析与可视化)

python中的matplotlib画直方图(数据分析与可视化) import numpy as np import pandas as pd import matplotlib.pyplot as pltpd.set_option("max_columns",None) plt.rcParams[font.sans-serif][SimHei] plt.rcParams[axes.unicode_minus]Fa…

centos8安装mysql

1.首先用finalShell远程连接到服务器 2.如果服务器之前安装过mysql请先卸载,我这里是用yum安装的,现在通过yum去卸载 yum remove -y mysql find / -name mysql //找到残留的文件,再通过rm -rf去删除对应的文件3.下面正式开始安装 (1&#…

基于微信小程序+Springboot校园二手商城系统设计和实现

博主介绍:✌全网粉丝30W,csdn特邀作者、博客专家、CSDN新星导师、Java领域优质创作者,博客之星、掘金/华为云/阿里云/InfoQ等平台优质作者、目前专注于大学生项目实战开发,讲解,毕业答疑辅导✌ 🍅文末获取源码联系🍅 👇&#x1f3…

【PHP】数据类型运算符位运算

文章目录 数据类型简单(基本)数据类型:4个小类复合数据类型:2个小类特殊数据类型:2个小类类型转换类型判断整数类型浮点类型布尔类型 运算符赋值运算符算术运算符比较运算符逻辑运算符连接运算符错误抑制符三目运算符自…

Apache ShenYu 学习笔记一

1、简介 这是一个异步的,高性能的,跨语言的,响应式的 API 网关。 官网文档:Apache ShenYu 介绍 | Apache ShenYu仓库地址:GitHub - apache/shenyu: Apache ShenYu is a Java native API Gateway for service proxy, pr…

UE学习记录03----UE5.2 使用MVVM示例

1.打开ue5.2新建C项目 2.项目中通过类导向新建C类,父类选择为UMVVMViewModelBase,创建完成会自动打开vs 3.在VS中对新建的类进行宏定义 使用 C 类向导 创建的类声明自动通过 UCLASS() 宏进行处理。 UCLASS() 宏使得引擎意识到这个类的存在,并…

【Rust】Rust学习 第十九章高级特征

现在我们已经学习了 Rust 编程语言中最常用的部分。在第二十章开始另一个新项目之前,让我们聊聊一些总有一天你会遇上的部分内容。你可以将本章作为不经意间遇到未知的内容时的参考。本章将要学习的功能在一些非常特定的场景下很有用处。虽然很少会碰到它们&#xf…

上海交大ACM班总教头团队重磅新作,带你动手学机器学习(文末赠书4本)

目录 0 写在前面1 什么是机器学习?2 ACM 班总教头:俞勇3 动手学习机器学习赠书活动 0 写在前面 机器学习强基计划聚焦深度和广度,加深对机器学习模型的理解与应用。“深”在详细推导算法模型背后的数学原理;“广”在分析多个机器…

怎么制作sip网络寻呼话筒,sip任意呼叫主机,

怎么制作sip网络寻呼话筒,sip任意呼叫主机, 所需材料一:SV-2103VP sip网络音频模块 功能如下: SV-2101VP/ SV-2103VP使用了AT32F437VGT7处理器构架加专业的双向音频Codec编解码器, 处理器负责数据的传输&#xff0c…

chapter 3 Free electrons in solid - 3.2 量子自由电子理论对一些现象的解释

3.2 自由电子气的热容 Heat capacity of free electron gas 3.2.1 计算自由电子的热容 Calculation of Heat Capacity of free Electrons T>0K, total energy of free electrons: E ∫ E d N 3 5 N e E F 0 [ 1 5 12 π 2 ( k B T E F 0 ) 2 ] E \int EdN \frac{3}{5}…

最新APP下载官网源码带app预览,

适合做软件,游戏,产品,企业工作室官网,有能力的可自行二开。 源码:星域社区官网源码.zip - 蓝奏云

ARL资产侦察灯塔 指纹增强

项目:https://github.com/loecho-sec/ARL-Finger-ADD 下载项目后运行 python3 ARl-Finger-ADD.py https://你的vpsIP:5003/ admin password该项目中的finger.json可以自己找到其他的指纹完善,然后运行脚本添加指纹。

VM——获取图像中的圆环区域

、需求:下图是圆柱形铝罐,需要获取图像中的罐沿区域。 2、方法如下: (1)通过找外圆,提取圆形区域 (2)利用“拷贝填充”模块,绘制外圆ROI,选择“输出掩膜” (3&#xff09…

【leetcode 力扣刷题】双指针//哈希表 解决链表有环等问题

双指针//哈希表 解决链表有环等问题 19. 删除链表的倒数第N个结点遍历两次,先求得链表长度,再删除双指针,只遍历一次 141. 环形链表 【判断链表是否有环】哈希表快慢双指针 142. 环形链表Ⅱ 【找环的入口】哈希表双指针求环中有多少个结点 面…