下面复制了演示。G中的编号是不同的,但数字只是标签(标签网格让我困惑)。在import numpy as np
from scipy import sparse
from scipy.sparse import linalg
import matplotlib.pyplot as plt
def numgrid(n):
"""
NUMGRID Number the grid points in a two dimensional region.
G = NUMGRID('R',n) numbers the points on an n-by-n grid in
an L-shaped domain made from 3/4 of the entire square.
adapted from C. Moler, 7-16-91, 12-22-93.
Copyright (c) 1984-94 by The MathWorks, Inc.
"""
x = np.ones((n,1))*np.linspace(-1,1,n)
y = np.flipud(x.T)
G = (x > -1) & (x < 1) & (y > -1) & (y < 1) & ( (x > 0) | (y > 0))
G = np.where(G,1,0) # boolean to integer
k = np.where(G)
G[k] = 1+np.arange(len(k[0]))
return G
def delsq(G):
"""
DELSQ Construct five-point finite difference Laplacian.
delsq(G) is the sparse form of the two-dimensional,
5-point discrete negative Laplacian on the grid G.
adapted from C. Moler, 7-16-91.
Copyright (c) 1984-94 by The MathWorks, Inc.
"""
[m,n] = G.shape
# Indices of interior points
G1 = G.flatten()
p = np.where(G1)[0]
N = len(p)
# Connect interior points to themselves with 4's.
i = G1[p]-1
j = G1[p]-1
s = 4*np.ones(p.shape)
# for k = north, east, south, west
for k in [-1, m, 1, -m]:
# Possible neighbors in k-th direction
Q = G1[p+k]
# Index of points with interior neighbors
q = np.where(Q)[0]
# Connect interior points to neighbors with -1's.
i = np.concatenate([i, G1[p[q]]-1])
j = np.concatenate([j,Q[q]-1])
s = np.concatenate([s,-np.ones(q.shape)])
# sparse matrix with 5 diagonals
return sparse.csr_matrix((s, (i,j)),(N,N))
if __name__ == '__main__':
print numgrid(6)
print delsq(numgrid(6)).todense()
G = numgrid(32)
D = delsq(G)
N = D.shape[0]
rhs = np.ones((N,1))
u = linalg.spsolve(D, rhs) # vector solution
U = np.zeros(G.shape) # map u back onto G space
U[G>0] = u[G[G>0]-1]
plt.contour(U)
plt.show()
结果: