【C#学习笔记】数据类中常用委托及接口——以List<T>为例

在这里插入图片描述

文章目录

  • List\<T\>/LinkedList \<T\>为什么是神?(泛型为什么是神)
  • 一些常见,通用的委托和接口
    • `Comparison`
    • `Enumerator`


List<T>/LinkedList <T>为什么是神?(泛型为什么是神)

List<T>为什么是神?在谈论这个问题之前,我想先说说其他数据表结构相较于List<T>究竟差在了哪里……

首先是HashTable

本身呢就被Dictionary<TKey,TValue>完爆,HashTable既不是线程安全的,也不是类型安全的,虽然提供了Synchronized()方法可以获取线程安全的类型,以为自己是个哈希表就可以为所欲为了,但这种挑战神的行为导致最终降下了神罚,最后几乎被HasSet<T>所取代。HashSet<T>的Contains方法复杂度是O(1),List<T>的Contains方法复杂度是O(n)。HashSet还是线程安全和类型安全的。而且HashSet<T>是专门设计用来做集合运算(取交集,并集等),所以提供了UnionWith、IntersectWith等方法。无论从方方面面来看HashTable都比不上HashSet<T>

然后是Array数组类型

竟然还胆敢在神的面前跳脚,仗着自己老前辈的身份倚老卖老,连插入删除都如此困难,除了因为随机存取查找复杂度低以外一无是处。完全不适合作为存储表的对象,没有动态变长的东西!

接着是ArrayList

Array自以为换个马甲就好使了。ArrayList是类型不安全的,虽有线性表的优点,但是类型不安全,内部默认装的是object类型的,导致它存取时存在装箱拆箱的操作。没有泛型,狗都不用。

List<T>的优点

List<T>是谦卑的,虽然HashSet<T>拥有更高的效率,但是它是一个使用哈希表的集结构,不允许出现重复元素,因此和表在定位上还是有区别的,所以神不会和他计较。作为表结构,无论是线性表的List<T>还是链表的LinkedList<T>,神已经赢了太多太多了。而对于Dictionary<K,V>,神慈悲地包容了它,可以使用ToDictionary ()方法转换为Dictionary(using System.Linq)。而Dictionary中的键或者值也可以通过ToList()方法转换为List<T>

因此,线性表请认准List<T>,链表则使用LinkedList<T>,字典请使用Dictionary<K,V>。哈希表/数据集请使用HashSet<T>

只查找,首选List;
插入为主,查找和删除为辅,首选LinkedList;
删除为主,查找和插入为辅,首选Dictionary;

想要效率高,泛型不可少。不使用泛型的数据类还是往后稍稍吧。


一些常见,通用的委托和接口

在这里插入图片描述
在这里插入图片描述
List中提供了许多方法,通过方法名我们一眼就知道这些方法是干什么的了,你可能注意到了其中重载的一些用于接受接口和泛型委托的方法,例如public void Sort(Comparison<T> comparison);public void Sort(IComparer<T> comparer);这些。此处需要介绍两个比较常用的委托(接口):ComparisonEnumerator

Comparison

Comparison——比较器,对应的接口是IComparerIComparer接受两个同类型变量的比较,这两个变量一个叫左值x,一个叫右值y。
比较器的返回值是int,默认地,如果左值大于右值,那么比较器的返回值是>0的,而如果右值大于左值则返回值<0。左右值相等则等于0

在C#中list提供了这个方法:

public void Sort(Comparison<T> comparison);
public void Sort(int index, int count, IComparer<T> comparer);
public void Sort();
public void Sort(IComparer<T> comparer);

这是个用于list的默认排序方法,当我们直接调用排序的时候,将会自动地对内部数据进行升序排序:

List<int> list = new List<int>();
list.Add(1);
list.Add(3);
list.Add(2);
list.Add(6);
list.Add(4);
for (int i = 0; i < list.Count; i++)
{Debug.Log(list[i]);
}
// 输出:1 3 2 6 4
list.Sort();
for (int i = 0; i < list.Count; i++)
{Debug.Log(list[i]);
}
// 输出:1 2 3 4 6

那么如果我们想要实现降序排序怎么办呢?我们就可以使用这个委托来解决,刚才我们说,在委托中左值大于右值,那么比较器的返回值是>0的,而如果右值大于左值则返回值<0。左右值相等则等于0。那么如果我们改变了默认委托的返回值,使得左值大于右值时返回值为<0不就可以实现降序排序了吗:

void Start()
{List<int> list = new List<int>();list.Add(1);list.Add(3);list.Add(2);list.Add(6);list.Add(4);for (int i = 0; i < list.Count; i++){Debug.Log(list[i]);}// 输出:1 3 2 6 4list.Sort(Desc);for (int i = 0; i < list.Count; i++){Debug.Log(list[i]);}// 输出:6 4 3 2 1
}
public int Desc(int x, int y)
{if (x > y)//修改委托的返回值逻辑{return -1;}else{return 1;}
}

甚至我们还可以根据自己的需求来修改排序,例如我希望右值为3的时候返回0:

public int Desc(int x, int y)
{if (y == 3){return 0; //虽然可以自定义,但并无卵用,Sort方法使用的据说是快速排序加堆排序// 除非你真的很了解源码,不然最后结果是怎么样就不晓得了}if (x > y){return -1;}else{return 1;}
}
// 排序后输出: 3 6 4 2 1

同样我们也支持匿名函数,使用lambda表达式和三目运算符来实现匿名函数的最简化:

list.Sort((x, y) => { return x > y ? -1 : 1; });

那么既然List可以接受泛型,当然也能接受类,我们可否直接对类进行排序呢?答案是不行的:

public class Item
{int Money;public Item(int i){Money = i;}
}
void Start()
{List<Item> list = new List<Item>();Item item1 = new Item(1);Item item2 = new Item(3);Item item3 = new Item(2);Item item4 = new Item(6);Item item5 = new Item(4);list.Add(item1);list.Add(item2);list.Add(item3);list.Add(item4);list.Add(item5);for (int i = 0; i < list.Count; i++){Debug.Log(list[i].Money);}list.Sort();// 报错,不是可比较类型for (int i = 0; i < list.Count; i++){Debug.Log(list[i].Money);}
}

之所以无法进行比较,是因为我们所定义的这个Item类并没有继承IComparable接口,如果我们想要类可比较,有两种方法:第一种就是像我们刚才讲的,为委托重写写一个接受两个Item类型参数的返回值为int类型的函数,以比较它们的money属性:

void Start()
{/*省略部分重复代码 */list.Sort(Desc);
}
public int Desc(Item x, Item y)
{if (x.Money > y.Money){return -1;}else{return 1;}
}

但是这样的话有几个问题,首先因为函数是定义在类外的,如果需要我们比较的是一个私有变量那这个方法就不可行了;其次,把比较的方法暴露在外面也不符合我们封装的初衷。

另一个更好的做法是让类继承IComparable<T>接口(特别注意要继承带泛型的接口而不是接受objectIComparable,避免装箱拆箱),那么list就能自动传入比较的方法:

public class Item : IComparable<Item>
{int Money;public Item(int i){Money = i;}public int CompareTo(Item other){if (this.Money > other.Money){return 1;}else{return -1;}}public int GetMoney(){return this.Money;}
}
void Start()
{List<Item> list = new List<Item>();Item item1 = new Item(1);Item item2 = new Item(3);Item item3 = new Item(2);Item item4 = new Item(6);Item item5 = new Item(4);list.Add(item1);list.Add(item2);list.Add(item3);list.Add(item4);list.Add(item5);for (int i = 0; i < list.Count; i++){Debug.Log(list[i].GetMoney());}// 输出: 1 3 2 6 4list.Sort();for (int i = 0; i < list.Count; i++){Debug.Log(list[i].GetMoney());}// 输出: 1 2 3 4 6
}

使用上述的代码,我们就实现了很好的封装,既能保证money是一个私有的变量,又可以实现list中对item类的排序。


Enumerator

Enumerator——枚举器,当我们需要遍历某个数据结构的时候,往往需要用到枚举器。通常一些数据类继承了IEnumerator接口,我们可以用其中的GetEnumerator()方法来实例化这个枚举器:

IEnumerator enumerator = list.GetEnumerator();

使用枚举器可以遍历整个数据结构,其中枚举器提供了三个成员:MoveNext,Current,Reset

    public interface IEnumerator{object Current { get; }bool MoveNext();void Reset();}

当使用枚举器的时候,这样遍历:

public class Item : IComparable<Item>
{int Money;public Item(int i){Money = i;}public int CompareTo(Item other){if (this.Money > other.Money){return 1;}else{return -1;}}public int GetMoney(){return this.Money;}
}
void Start()
{Initiate();IEnumerator enumerator = list.GetEnumerator();while (enumerator.MoveNext()){Item newitem = (Item)enumerator.Current;Debug.Log(newitem.GetMoney());}enumerator.Reset();// 输出: 1 3 2 6 4
}

通过枚举器也可以实现遍历,问题在于枚举器的返回类型是object,这又避免不了装箱拆箱操作了。

我们也可以直接使用List内部提供的枚举器,这个枚举器是可以立即释放的,因为它继承了IDisposable接口:

public struct Enumerator : IEnumerator<T>, IEnumerator, IDisposable
{public T Current { get; }public void Dispose();public bool MoveNext();
}

只需使用using即可在使用完毕之后将其立即释放,实际上直接使用内部提供的枚举器反而更好,因为list内部的枚举值Current返回类型是对应的泛型而非object

using (var enumerator = list.GetEnumerator())
{while (enumerator.MoveNext()){// 由于返回值是泛型类型,所以可以直接调用方法而无需拆箱Debug.Log(enumerator.Current.GetMoney());}
}
enumerator.Reset(); // 编译错误,在using语句块外对象已经被销毁

你可能也注意到了,在编译器中提供了两个很相似的接口:IEnumerableIEnumerator。根据词性我们知道,前者是可枚举的意思,后者是枚举器。当一个类继承了IEnumerable<T>的接口时,实现的接口方法会提供GetEnumerator(),需要实现IEnumerable以及IEnumerable<T>的接口,并返回对应枚举器。当一个类继承了IEnumerable的时候,我们才可以使用foreach来进行遍历。

以下摘自「Unity3D」(6)协程使用IEnumerator的几种方式

除此之外,你可能也发现了,IEnumerator正是协程定义时的关键字,有意思的是协程的执行正是通过枚举器实现的,每个定义的单个协程其实正式的名称是Routine例程,不同Routine之间协同执行,就是Coroutine协程。这个Routine需要能够分步计算,才能够互相协作,不然一路执行到底,就是一般函数了。而IEnumerator接口恰恰承担了这个分步计算的任务。每次执行就是一次MoveNext(),并且可以通过Current返回执行中的结果。

所以,带有yield指令的IEnumerator的函数,最终会被编译成一个实现了IEnumerator接口的类,这是C#自带的功能。


经过多日对C#的学习,我已经被其深深地折服,java的特性,python的灵活,c++的花里胡哨,所有语言之主,唯一真神。厦门!🙏

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/50021.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

打印技巧——word中A4排版打印成A3双面对折翻页

在进行会议文件打印时&#xff0c;我们常会遇到需要将A4排版的文件&#xff0c;在A3纸张上进行双面对折翻页打印&#xff0c;本文对设置方式进行介绍&#xff1a; 1、在【布局】选项卡中&#xff0c;点击右下角小箭头&#xff0c;打开页面设置选项卡 1.1在【页边距】中将纸张…

发力服务业务,龙湖集团半程领跑赢在“智慧”

成立三十载&#xff0c;龙湖集团一直是房地产行业“特立独行”的存在。 一方面&#xff0c;龙湖在对外战略方面长期量入为出&#xff0c;从不背上过重的“包袱”。 不久前&#xff0c;一则消息引发市场关注&#xff1a;龙湖集团提前偿还17亿元债务&#xff0c;已基本全部还清…

Unity 3D之 利用Vector3 计算移动方向,以及实现位移多少

文章目录 先分析代码&#xff0c;从代码中了解Vector3 moveDirection new Vector3(10f, 0f, 100f);合法吗Vector3 moveDirection new Vector3 (xf,yf,zf)不是用来表示三维坐标的怎么表示在某个方向的位移 先分析代码&#xff0c;从代码中了解 这段代码是一个在游戏开发中常见…

基于Jenkins自动打包并部署docker、PHP环境,ansible部署-------从小白到大神之路之学习运维第86天

第四阶段提升 时 间&#xff1a;2023年8月23日 参加人&#xff1a;全班人员 内 容&#xff1a; 基于Jenkins部署docker、PHP环境 目录 一、环境部署 &#xff08;一&#xff09;实验环境&#xff0c;服务器设置 &#xff08;二&#xff09;所有主机关闭防火墙和selinu…

【案例】登录注册

<template><div class"loginhome"><Header :butShow"butShow"></Header><div class"formdiv"><div style"text-align:center;padding:10px;"><h3>你好登录账号{{ stauts 3? 注册:登录 }}…

光谱成像系统视觉均匀校准积分球光源

数字相机的光谱灵敏度是成像传感器、光学透镜、滤光片以及相机内部图像处理过程等诸多因素的综合结果。即使是同一台相机&#xff0c;采用不同的光学镜头和不同的滤光片&#xff0c;由于光学系统的结构和光学材料的透过率不同&#xff0c;导致整个成像系统的光谱灵敏度也有所差…

大数据数据仓库

一.在线教育 1.数据采集 1.数仓概念 数据仓库是为企业制定决策&#xff0c;提供数据支持的。数据采集和存储、对数据进行计算和分析 2.项目架构 2.数据分类 业务数据 用户行为数据 爬虫数据 2.离线数仓 3.实时数仓

LVS之keepalived

1、keepalived 概述 总结&#xff1a;Keepalived 软件就是通过VRRP协议来实现高可用功能。 应用场景&#xff1a;企业应用中&#xff0c;单台服务器承担应用存在单点故障的危险 单点故障一旦发生&#xff0c;企业服务将发生中断&#xff0c;造成极大的危害 VRRP通信原理&…

gRpc的四种通信方式详细介绍

&#x1f337;&#x1f341; 博主猫头虎 带您 Go to New World.✨&#x1f341; &#x1f984; 博客首页——猫头虎的博客&#x1f390; &#x1f433;《面试题大全专栏》 文章图文并茂&#x1f995;生动形象&#x1f996;简单易学&#xff01;欢迎大家来踩踩~&#x1f33a; &a…

微服务 Eureka

Eureka Eureka是Netflix开源的一个用于构建基于微服务架构的服务发现和注册中心技术。在微服务架构中&#xff0c;系统被拆分成多个小型、自治的服务&#xff0c;每个服务负责特定的业务功能。这些服务需要能够相互发现和通信&#xff0c;这就是Eureka所提供的功能。 Eureka主…

网络互联与互联网 - TCP 协议详解

文章目录 1 概述2 TCP 传输控制协议2.1 报文格式2.2 三次握手&#xff0c;建立连接2.3 四次挥手&#xff0c;释放连接 3 扩展3.1 实验演示3.2 网工软考 1 概述 在 TCP/IP 协议簇 中有两个传输协议 TCP&#xff1a;Transmission Control Protocol&#xff0c;传输控制协议&…

利用tidevice+mysql+grafana实现ios性能测试

利用tidevicemysqlgrafana实现ios性能测试 1.什么是tidevice&#xff1f; tidevice是一个可以和ios设备进行通信的工具&#xff0c;提供以下功能&#xff1a; 截图获取手机信息ipa包的安装和卸载根据bundleID 启动和停止应用列出安装应用信息模拟Xcode运行XCTest&#xff0c…

机器学习深度学习——针对序列级和词元级应用微调BERT

&#x1f468;‍&#x1f393;作者简介&#xff1a;一位即将上大四&#xff0c;正专攻机器学习的保研er &#x1f30c;上期文章&#xff1a;机器学习&&深度学习——NLP实战&#xff08;自然语言推断——注意力机制实现&#xff09; &#x1f4da;订阅专栏&#xff1a;机…

【C++设计模式】用简单工厂模式实现按汽车重量输出汽车类型

2023年8月24日&#xff0c;周四凌晨 #include<iostream>class CarType{ public:virtual std::string getType()0; };class MiniCar:public CarType{ public:std::string getType() override{return "小型车";}; };class MidSizeCar:public CarType{ public:std…

游戏出海需知:Admob游戏广告变现策略

越来越多的出海游戏公司更加重视应用内的广告变现&#xff0c;而 AdMob因为其提供的丰富的广告资源&#xff0c;稳定平台支持&#xff0c;被广泛接入采用。 Admob推出的广告变现策略包括bidding、插页式激励视频、开屏广告、各种细分功能的报告等等。 一、Bidding 竞价策略 …

CSS background 背景

background属性为元素添加背景效果。 它是以下属性的简写&#xff0c;按顺序为&#xff1a; background-colorbackground-imagebackground-repeatbackground-attachmentbackground-position 以下所有示例中的花花.jpg图片的大小是4848。 1 background-color background-col…

ReactNative 密码生成器实战

效果展示图 使用插件 Formik 负责表单校验、监听表单提交、数据校验错误信息展示 Yup 负责表单校验规则 分析页面 从上述的展示图我们可以看到的主要元素有&#xff1a;输入框、单选按钮和按钮。其中生成的密码长度不可能很大也不可能为负数和 0&#xff0c;所以我们可以限…

idea的断点调试

1、行断点 首先在代码的最左侧点击会显示红色的圆圈 第二步在main方法中右键选中debug run进行运行 会出现下面图片的情况 出现上图之后&#xff0c;点击console 下一步 这个时候就可以看到调试的结果了 6、方法调用栈&#xff1a;这里显示了该线程调试所经过的所有方法&…

C语言小白急救 指针进阶讲解1

文章目录 指针一、 字符指针二、 指针数组三、数组指针1.数组的地址2.数组指针3.数组指针的应用 四、数组参数、指针参数1. 一维数组传参2.二维数组传参3.一级指针传参4.二级指针传参 五、函数指针1.函数的地址2.函数指针3.练习 指针 指针的概念&#xff1a; 1.指针就是个变量…

跨越边界:从前端切图仔走进iOS开发(Swift版--上集)

本文简介 点赞 关注 收藏 学会了 本文将以前端开发者的视角&#xff0c;和各位工友进入iOS开发的世界。 本文以实战为导向&#xff0c;快速掌握iOS开发这个技能。 无论你是想要扩展技能领域&#xff0c;还是对iOS开发充满好奇&#xff0c;花一个下午学习本文都能打开iOS开…