外设驱动库开发笔记34:OLED显示屏驱动

  现在OLED显示屏在嵌入式系统中应用的越来越多。对于一些显示信息不太复杂,以显示信息为主的需求,我们一般会选择OLED显示屏。在这一篇中,我们将讨论OLED显示屏驱动的设计与实现。

1、功能概述

  从使用的情况来说,较为常用的是0.96英寸的OLED128x64的显示屏。这种OLED屏多采用象SSD1306这类驱动芯片,所以我们对OLED屏的操作实际就是对控制芯片的操作。

  对于0.96英寸的OLED128x64的显示屏,其像素点为128x64个,对应在显示RAM中的128x64个位。在显存中,这些区域被划分为8个Page,这些页的划分具体如下图所示:

  在每一页中包括128x8个位对应相应的像素点,对显示像素的操作就是对乡村中对应的位的操作,每页中像素点的排布如下:

  对于操作0.96英寸的OLED128x64显示屏的接口有多种,如6800并行接口、8080并行接口、SPI串行接口以及I2C串行接口等。对于并行接口应用较少,现在应用较多的是SPI和I2C这两种串行总线接口。在SPI接口方式下,有3个控制引脚是需要操作的,分别是复位、数据命令选择和片选信号。而在I2C接口方式下,仅有复位引脚是可控的,但在发送命令或数据时会多一个字节的控制字。

2、驱动设计与实现

  我们已经了解了0.96英寸的OLED128x64显示屏的基本情况,在这里我们来考虑如何实现0.96英寸的OLED128x64显示屏的驱动设计。

2.1、对象定义

  在使用一个对象之前我们需要获得一个对象。同样的我们想要OLED显示屏就需要先定义OLED显示屏的对象。

2.1.1、对象的抽象

  我们要得到OLED显示屏对象,需要先分析其基本特性。一般来说,一个对象至少包含两方面的特性:属性与操作。接下来我们就来从这两个方面思考一下OLED显示屏的对象。

  先来考虑属性,作为属性肯定是用于标识或记录对象特征的东西。我们来考虑0.96英寸的OLED128x64显示屏对象属性。我们考虑SPI和I2C两种接口的情形,所以我们要分辨当前使用的接口形式以确定采取适当的操作方式,所以我们将端口类型设置为其属性以保存当前的操作接口类型。在I2C接口时,每一台I2C从设备都需要有一个设备地址,我们要记录当前从设备的地址,所以将其设置为属性。

  接着我们还需要考虑OLED显示屏对象的操作问题。在SPI接口模式下,我们需要控制复位、数据命令选择以及片选控制引脚,而在I2C接口模式下,我们需要控制复位引脚。这些控制引脚的操作都依赖于具体的硬件平台,所以我们将其作为对象的操作。我们要想OLED发送命令和数据,但不论是何种接口类型这一操作都依赖于具体的软硬件平台,所以我们将其作为对象的操作。为了控制操作时序,我们需要延时操作函数,而延时操作也依赖于具体的软硬件平台,所以我们将其作为对象的操作。

  根据上述我们对OLED显示屏的分析,我们可以定义OLED显示屏的对象类型如下:

/*定义OLED对象类型*/
typedef struct OledObject {uint8_t devAddress;OledPortType port;void (*Write)(struct OledObject *oled,uint8_t *wData,uint16_t wSize);void (*ChipSelcet)(OledCSType en);void (*DCSelcet)(OledDCType dc);void (*ChipReset)(OledRSTType rst);void (*Delayms)(volatile uint32_t nTime);
}OledObjectType;

2.1.2、对象初始化

  我们知道,一个对象仅作声明是不能使用的,我们需要先对其进行初始化,所以这里我们来考虑OLED显示屏对象的初始化函数。一般来说,初始化函数需要处理几个方面的问题。一是检查输入参数是否合理;二是为对象的属性赋初值;三是对对象作必要的初始化配置。

  而且0.96英寸的OLED128x64显示屏在实现复位引脚的操作后将实现其初始化配置。据此我们设计OLED显示屏对象的初始化函数如下:

/*OLED显示屏对象初始化*/
void OledInitialization(OledObjectType *oled,      //OLED对象OledPortType port,       //通讯端口uint8_t address,        //I2C设备地址OledWrite write,        //写数据函数OledChipReset rst,       //复位信号操作函数指针OledDCSelcet dc,        //DC信号控制函数指针OledChipSelcet cs,       //SPI片选信号函数指针OledDelayms delayms       //毫秒延时函数指针)
{if((oled==NULL)||(write==NULL)||(rst==NULL) ||(delayms==NULL)){return;}oled->Write=write;oled->ChipReset=rst;oled->Delayms=delayms;oled->port=port;if(port==OLED_I2C){if((address==0x3C)||(address==0x3D)){oled->devAddress=(address<<1);}else if((address==0x78)||(address==0x7A)){oled->devAddress=address;}else{oled->devAddress=0x00;}if(dc==NULL){return;}oled->DCSelcet=dc;oled->ChipSelcet=cs;}else{oled->devAddress=0xFF;if(cs==NULL){oled->ChipSelcet=OledChipSelect;}else{oled->ChipSelcet=cs;}oled->DCSelcet=dc;}oled->ChipReset(OLED_WORK);oled->Delayms(100);oled->ChipReset(OLED_RESET);oled->Delayms(100);oled->ChipReset(OLED_WORK);SendToOled(oled,0xAE,OLEDDC_Command); //关闭显示SendToOled(oled,0x20,OLEDDC_Command); //Set Memory Addressing Mode    SendToOled(oled,0x10,OLEDDC_Command); //00,Horizontal Addressing Mode;01,Vertical Addressing Mode;10,Page Addressing Mode (RESET);11,InvalidSendToOled(oled,0xB0,OLEDDC_Command); //Set Page Start Address for Page Addressing Mode,0-7SendToOled(oled,0xA1,OLEDDC_Command); //0xa0,X轴正常显示;0xa1,X轴镜像显示SendToOled(oled,0xC8,OLEDDC_Command); //0xc0,Y轴正常显示;0xc8,Y轴镜像显示SendToOled(oled,0x00,OLEDDC_Command); //设置列地址低4位SendToOled(oled,0x10,OLEDDC_Command); //设置列地址高4位SendToOled(oled,0x40,OLEDDC_Command); //设置起始线地址SendToOled(oled,0x81,OLEDDC_Command); //设置对比度值SendToOled(oled,0x7F,OLEDDC_Command); //------SendToOled(oled,0xA6,OLEDDC_Command); //0xa6,正常显示模式;0xa7,SendToOled(oled,0xA8,OLEDDC_Command); //--set multiplex ratio(1 to 64)SendToOled(oled,0x3F,OLEDDC_Command); //------SendToOled(oled,0xA4,OLEDDC_Command); //0xa4,显示跟随RAM的改变而改变;0xa5,显示内容忽略RAM的内容SendToOled(oled,0xD3,OLEDDC_Command); //设置显示偏移SendToOled(oled,0x00,OLEDDC_Command); //------SendToOled(oled,0xD5,OLEDDC_Command); //设置内部显示时钟频率SendToOled(oled,0xF0,OLEDDC_Command); //------SendToOled(oled,0xD9,OLEDDC_Command); //--set pre-charge periodSendToOled(oled,0x22,OLEDDC_Command); //------SendToOled(oled,0xDA,OLEDDC_Command); //--set com pins hardware configurationSendToOled(oled,0x12,OLEDDC_Command); //------SendToOled(oled,0xDB,OLEDDC_Command); //--set vcomhSendToOled(oled,0x20,OLEDDC_Command); //------SendToOled(oled,0x8D,OLEDDC_Command); //--set DC-DC enableSendToOled(oled,0x14,OLEDDC_Command); //------SendToOled(oled,0xAF,OLEDDC_Command); //打开显示OledClearScreen(oled);
}

2.2、对象操作

  我们已经完成了OLED显示屏对象类型的定义和对象初始化函数的设计。但我们的主要目标是获取对象的信息,接下来我们还要实现面向OLED显示屏的各类操作。

  对于0.96英寸的OLED128x64显示屏来说,不论是采用何种接口方式,也不论是需要显示什么内容。对于我们来说,虽然在不同的接口模式下操作会有些许差别,但本质上都是向OLED写数据。

  在SPI接口模式下,我们在向OLED发送数据和命令时,需要同时操作片选信号和数据命令选择信号,以表明需要操作的对象和发送的是数据还是命令。具体的操作时序如下:

  在I2C接口模式下,我们在向OLED发送数据和命令时,没有片选和数据命令选择信号,所以我们需要发送从站地址以区分要操作的对象,需要发送控制字节以区分是数据还是命令。具体的操作时序如下:

  根据前述对0.96英寸的OLED128x64显示屏的描述以及上述时序图,我们可以编写向OLED发送数据的函数如下:

/*向OLED发送数据*/
static void SendToOled(OledObjectType *oled,uint8_t sData,OledDCType type)
{uint8_t wData[2];if(oled->port==OLED_SPI){oled->ChipSelcet(OLEDCS_Enable);if(type==OLEDDC_Command){oled->DCSelcet(OLEDDC_Command);}else{oled->DCSelcet(OLEDDC_Data);}oled->Write(oled,&sData,1);oled->ChipSelcet(OLEDCS_Disable);}else{if(type==OLEDDC_Command){wData[0]=0x00;}else{wData[0]=0x40;}wData[1]=sData;oled->Write(oled,wData,2);}
}

3、驱动的使用

  我们已经实现了0.96英寸的OLED128x64显示屏驱动设计及实现,现在我们需要对这一驱动进行验证,基于此我们需要设计一个简单的验证应用。

3.1、声明并初始化对象

  使用基于对象的操作我们需要先得到这个对象,所以我们先要使用前面定义的OLED显示屏对象类型声明一个OLED显示屏对象变量,具体操作格式如下:

  OledObjectType oled;

  声明了这个对象变量并不能立即使用,我们还需要使用驱动中定义的初始化函数对这个变量进行初始化。这个初始化函数所需要的输入参数如下:

  OledObjectType *oled, //OLED对象

  OledPortType port, //通讯端口

   uint8_t address, //I2C设备地址

  OledWrite write, //写数据函数

  OledChipReset rst, //复位信号操作函数指针

  OledDCSelcet dc, //DC信号控制函数指针

  OledChipSelcet cs, //SPI片选信号函数指针

  OledDelayms delayms //毫秒延时函数指针

  对于这些参数,对象变量我们已经定义了。所使用的通讯接口方式为枚举,根据实际情况选择就好了。而从站地址对于OLED来说,有几种选择,根据实际情况输入就可。主要的是我们需要定义几个函数,并将函数指针作为参数。这几个函数的类型如下:

/*向OLED下发指令,指令格式均为1个字节*/
typedef void (*OledWrite)(OledObjectType *oled,uint8_t *wData,uint16_t wSize);/*复位信号操作函数指针*/
typedef void (*OledChipReset)(OledRSTType rst);/*数据命令,用于SPI接口*/
typedef void (*OledDCSelcet)(OledDCType dc);/*片选信号,用于SPI接口*/
typedef void (*OledChipSelcet)(OledCSType en);   /*毫秒秒延时函数*/
typedef void (*OledDelayms)(volatile uint32_t nTime);  

  对于这几个函数我们根据样式定义就可以了,具体的操作可能与使用的硬件平台有关系。片选操作函数用于多设备需要软件操作时,如采用硬件片选可以传入NULL即可。具体函数定义如下:

void WriteDataToLED(struct OledObject *oled,uint8_t *wData,uint16_t wSize)
{HAL_I2C_Master_Transmit(&oledhi2c,oled->devAddress,wData,wSize,1000);
}void OLedChipResetf(OledRSTType rst)
{HAL_GPIO_WritePin(GPIOD,GPIO_PIN_8,(GPIO_PinState)rst);
}

  对于延时函数我们可以采用各种方法实现。我们采用的STM32平台和HAL库则可以直接使用HAL_Delay()函数。于是我们可以调用初始化函数如下:

/*OLED显示屏对象初始化*/
OledInitialization(&oled,     //OLED对象OLED_I2C,    //通讯端口0x78,      //I2C设备地址WriteDataToLED, //写数据函数OLedChipResetf, //复位信号操作函数指针NULL,      //DC信号控制函数指针NULL,      //SPI片选信号函数指针HAL_Delay    //毫秒延时函数指针);

  因在I2C接口模式下,片选信号和数据命令选择信号并不需要控制所以以NULL输入即可。

3.2、基于对象进行操作

  我们定义了对象变量并使用初始化函数给其作了初始化。接着我们就来考虑操作这一对象获取我们想要的数据。我们在驱动中已经针对不同的字体大小设置了不同的操作函数,接下来我们使用这一驱动开发我们的应用实例。

/*OLED显示信息*/
void OledDisplayMessage(void)
{/* 世(0) 界(1) 你(2) 好(3)*/uint8_t chinChar[4][32]={{0x20,0x20,0x20,0xFE,0x20,0x20,0xFF,0x20,0x20,0x20,0xFF,0x20,0x20,0x20,0x20,0x00,0x00,0x00,0x00,0x7F,0x40,0x40,0x47,0x44,0x44,0x44,0x47,0x40,0x40,0x40,0x00,0x00},//"世",0{0x00,0x00,0x00,0xFE,0x92,0x92,0x92,0xFE,0x92,0x92,0x92,0xFE,0x00,0x00,0x00,0x00,0x08,0x08,0x04,0x84,0x62,0x1E,0x01,0x00,0x01,0xFE,0x02,0x04,0x04,0x08,0x08,0x00},//"界",1{0x00,0x80,0x60,0xF8,0x07,0x40,0x20,0x18,0x0F,0x08,0xC8,0x08,0x08,0x28,0x18,0x00,0x01,0x00,0x00,0xFF,0x00,0x10,0x0C,0x03,0x40,0x80,0x7F,0x00,0x01,0x06,0x18,0x00},//"你",2{0x10,0x10,0xF0,0x1F,0x10,0xF0,0x00,0x80,0x82,0x82,0xE2,0x92,0x8A,0x86,0x80,0x00,0x40,0x22,0x15,0x08,0x16,0x61,0x00,0x00,0x40,0x80,0x7F,0x00,0x00,0x00,0x00,0x00}//"好",3};char pStr[]="Hello, World!";float x=1.1;float y=2.2;float z=3.3;//显示16x16的汉字OledShow16x16Char(&oled,0,32,chinChar[0]);OledShow16x16Char(&oled,0,48,chinChar[1]);OledShow16x16Char(&oled,0,64,chinChar[2]);OledShow16x16Char(&oled,0,80,chinChar[3]);//显示8x16的ASCII字符OledShowString(&oled,OLED_FONT_8x16,2,32,pStr);//显示8x16的ASCII字符OledShowString(&oled,OLED_FONT_8x16,4,20,"X%0.1f,Y%0.1f,Z%0.1f",x,y,z);}

4、应用总结

  在本篇中,我们设计并实现了0.96英寸的OLED128x64显示屏的驱动,并设计了一个简单的验证应用来验证这一驱动程序。在我们的验证应用中使用OLED显示了16下6点阵的中文字符,以及8x16点阵的ASCII字符,其显示效果与我们预期一致。

  在使用驱动时需注意,0.96英寸的OLED128x64显示屏支持SPI和I2C两种接口,而且SPI也支持3线和4线模式,但我们在测试应用中只使用了I2C接口,在I2C接口时,不需要控制片选信号和数据命令选择信号,所以在初始化时传递NULL值就可以了。

  在使用驱动时需注意,采用SPI接口的器件需要考虑片选操作的问题。如果片选信号是通过硬件电路来实现的,我们在初始化时给其传递NULL值。如果是软件操作片选则传递我们编写的片选操作函数。在使用SPI接口时,支持SPI模式0(CPOL=CPHA=0)和模式3(CPOL=CPHA=1)。

欢迎关注:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/499312.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

外设驱动库开发笔记35:迪文触摸屏驱动

有些时候嵌入式系统也需要显示更为复杂的图形&#xff0c;需要更丰富的数据展示。为此&#xff0c;我们需要更大&#xff0c;色彩更丰富&#xff0c;带触屏的显示屏&#xff0c;当然性价比更高就最好了。在我们的项目中遇到此类需求&#xff0c;我们有时会选择DWIN触摸屏。在本…

快速实现一个室内空气质量检测仪

冬天我们大多会关闭门窗&#xff0c;而依靠暖通空调设备来维持室内温度。而在保证居室温度的同时&#xff0c;我们也希望保持居室内大气环境的健康度。鉴于此&#xff0c;我们设计了一个简单的室内空气质量检测器。 1、系统概述 我们依靠暖通空调设备来维持室内温度、湿度和通…

外设驱动库开发笔记36:NTC负温度系数热电阻测温驱动

在嵌入式产品中&#xff0c;温度检测非常常见。在成本比较敏感而精度要求较低时&#xff0c;NTC电阻是个不错的选择。在这一篇中&#xff0c;我们将讨论如何和设计并实现一个通用的NTC驱动&#xff0c;以便在后续的项目中更方便的复用。 1、功能概述 NTC是指随温度上升电阻呈指…

外设驱动库开发笔记37:S1336-5BQ光敏二极管作为光度计驱动

光敏二极管能够实现很多应用&#xff0c;用于光度检测即是其一。我们在一些产品中就曾使用S1336-5BQ光敏二极管进行光度值检测。所以在本篇中&#xff0c;我们将讨论如何设计并实现S1336-5BQ光敏二极管用于光度检测的驱动。 1、功能概述 根据相关的资料&#xff0c;光电二极管…

PID控制器改进笔记之六:改进PID控制器之参数设定

前面我们发布了一系列PID控制器相关的文章&#xff0c;包括经典PID控制器以及参数自适应的PID控制器。这一系列PID控制器虽说实现了主要功能&#xff0c;也在实际使用中取得了良好效果&#xff0c;但还有很多的细节部分可以改进以提高性能和灵活性。这篇中我们来讨论改进PID控制…

软件设计开发笔记1:基于状态机的程序设计

在编码实现的过程中&#xff0c;我们会经常使用到条件判断结构&#xff0c;而且使用起来很方便。但是在需要转移的状态比较多&#xff0c;或是条件比较复杂时&#xff0c;我们就可能需要很长的条件判断结构来处理。不过&#xff0c;过于复杂的条件判断结构会给代码的编写和维护…

外设驱动库开发笔记38:RTD热电阻测温驱动

我们已经讨论过多种温度检测方式&#xff0c;但我们尚未关注热电阻温度检测&#xff0c;但热电阻测温在工业环境中是非常常见的。尽管有很多集成的数字式的热电阻接口元器件&#xff0c;但这些器件不但成本较高&#xff0c;灵活性也大打折扣。所以我们有时会使用更简单灵活的电…

外设驱动库开发笔记39:按键操作驱动

按键在我们的项目中是经常使用到的组件。一般来说&#xff0c;我们都是在用到按键时直接针对编码&#xff0c;但这样每次都做很多重复性的工作。所以在这里我们考虑做一般性抽象得到一个可应用于按键操作的通用性驱动程序。 1、功能概述 按键操作在我们的产品种经常用到&#…

外设驱动库开发笔记40:AT25xxx外部存储器驱动

我们在前面开发过AT24CXX系列EEPROM存储器&#xff0c;它使用的是I2C接口。不过有时候我们也会使用SPI接口的EEPROM存储器。在这一篇我们将来讨论AT25XXX系列EEPROM存储器的驱动设计、实现及使用。 1、功能概述 AT25XXX系列EEPROM存储器采用SPI接口&#xff0c;因其操作简单且…

闪存中的键值对:无文件系统 minINI

许多嵌入式系统应用需要以持久的方式存储某种数据&#xff1a;校准值、设置或日志信息。对于较少的数据量&#xff0c;使用外部存储器或文件系统是一种过度大材小用。在许多系统中&#xff0c;我使用minINI以“ini-file”的方式存储键值解析&#xff0c;但它需要使用某种文件系…

外设驱动库开发笔记41:ADS1256 ADC驱动

我们经常会碰到多通道AD采集的需求&#xff0c;有时候甚至需要高精度的ADC器件。本篇我们将来设计并实现ADS1256模数转换器的驱动。并简单讨论该驱动使用方式。 1、功能概述 ADS1256是TI公司推出的一款低噪声高分辨率的24位Sigma-Delta(E-v)模数转换器(ADC)。E-vADC与传统的逐…

PID参数自整定库之一:继电反馈整定算法

在前述的篇章中&#xff0c;我们实现了PID控制器并在后续对其进行了改进。但作为经典PID控制器还存在PID参数整定的问题。通常我们可以采取人工整定的办法&#xff0c;但人工整定涉及到比较专业的知识&#xff0c;而且找到合适的参数本身也不是一件容易的事&#xff0c;所以人们…

外设驱动库开发笔记42:DAC8552 DAC驱动

模拟信号输出是经常会遇到的应用需求&#xff0c;解决的办法应多种&#xff0c;但我们使用最多的还是数模转换。对于不同的数模转换器我们需要为其编写适用的驱动程序&#xff0c;在这一篇中我们就来考虑如何实现DAC8552高精度模数转换器的驱动程序。 1、功能概述 该DAC8552是…

软件设计开发笔记2:基于QT设计串口调试工具

串口通信是我们经常会遇到的问题。很多时候当我们设计一个串口应用时&#xff0c;我们希望有一个简便的、可视的方式来验证它。这一篇中我们就来基于QT设计一个串口调试工具。 1、概述 在开始软件设计之前&#xff0c;我们来简略地分析一下这样一个小软件其要包含的主要内容有…

外设驱动库开发笔记43:GPIO模拟SPI驱动

SPI总线是我们常用的串行设备接口&#xff0c;一般情况下我们都会适应硬件SPI接口&#xff0c;但有些时候当硬件端口不足时&#xff0c;我们也希望可以使用软件来模拟SPI硬件接口&#xff0c;特别是要求不是很高的时候。在这一篇中我们将来讨论如何使用GPIO和软件来模拟SPI通讯…

外设驱动库开发笔记44:DDC114 ADC驱动

在产品设计过程中&#xff0c;很多时候都会用到ADC器件&#xff0c;而在一些特殊场合还需要一些特别的ADC器件。我们在这篇中将讨论常用于医疗器件方面的&#xff0c;DDC114这款电流输入ADC&#xff0c;并为其设计一个驱动程序。 1、功能概述 模数转换器DDC114是一款电流输入型…

PID控制器改进笔记之七:改进PID控制器之防超调设定

我们已经设计了PID控制器&#xff0c;并根据实际使用的情况对器进行了诸多的改进。在这一篇中我们将讨论如何改进PID控制器超调的问题。 1、问题提出 在前面的文章中&#xff0c;我们曾推导过增量式PID控制器的公式&#xff0c;并且对其进行了离散化以适用于程序实现&#xff…

软件设计开发笔记3:基于QT的Modbus RTU主站

Modbus是一种常见的工业系统通讯协议。在我们的设计开发工作中经常使用到它。在这一篇中我们将简单实现一个基于QT的Modbus RTU主站上位工具。 1、概述 Modbus RTU主站应用很常见&#xff0c;有一些是通用的&#xff0c;有一些是专用的。而这里我们希望实现一个主要针对我们的…

外设驱动库开发笔记45:MS4515DO压力传感器驱动

很多时候我们需要检测流量和压力这些参数&#xff0c;比如我们要检测大气压&#xff0c;或者通过测量差压来获得输送流体的流量等&#xff0c;都需要用到压力传感器。这一篇我们就来讨论MS4515DO压力传感器的数据获取。 1、功能概述 MS4515DO是TE公司推出的一款基于PCB安装的小…

外设驱动库开发笔记48:MCP4725单通道DAC驱动

在产品设计过程中&#xff0c;我们经常会遇到数模转换的应用需求。在本篇种我们就来讨论一下MCP4725单通道数模转换器的驱动设计与实现。 1、功能概述 MCP4725是一个低功耗&#xff0c;高精度&#xff0c;单通道&#xff0c;12位缓冲电压输出数字到模拟转换器(DAC)与非易失性存…