传感器数据完善 AI 功能,激起机器人“网络效应”

来源:36氪

概要:传感器数据将有助于推动AI的发展。 AI系统也同时扩展我们处理数据的能力,并帮助我们发现这些数据的创造性用途。 


现在我们都对AI很熟悉了,也知道算法的完善离不开海量的数据。数据量越大,算法给出的结果可能就越精准,越“如人意”。人对世界的感知,很大一部分是基于我们的感官获取的“数据”。机器人和目前很火的无人驾驶依靠的则是来自传感器的数据。随着传感器获取和处理的数据量越来越大,智能机器人的发展也将到达一个“临界点”。


只要是想扩展业务或建立网络的人,应该对“网络效应”很熟悉。例如,使用像eBay、淘宝这样的市场平台,买家和卖家越多,它就越完善,用处也就越大。 那么,数据的网络效应指的就是,随着服务使用的增加,服务也变得越来越完善的动态过程,比如,随着机器学习模型训练数据量的增加,模型得到的结果也越来越准确。


网络外部性(network externality),又称网络效应(network effect)或需求方规模经济(demand-side economies of scale),指在经济学或商业中,消费者选用某项商品或服务,其所获得的效用与“使用该商品或服务的其他用户人数”具有相关性时,此商品或服务即被称为具有网络外部性。 最常见的例子是电话或社交网络服务:采用某一种社交媒体的用户人数越多,每一位用户获得越高的使用价值。


无人驾驶车辆和其他智能机器人依赖的是传感器,这些传感器产生的海量数据量,并且越来越庞大。 获取的数据可以被用来构建更好的AI模型,然后机器人可以依靠这些AI模型,做出实时决策,并在真实世界、真实环境中“找到方向”。


当今智能机器人的核心是AI与传感器的融合,可以产生了良性的反馈循环——我们也可以称之为机器人“网络效应”。目前,我们正处于引爆这一网络效应、彻底改变机器人的临界点。


AI的快速演变


人工智能的下一个探索领域是机器人技术,如果你想知道这背后的原因,那你得先了解了解人工智能本身是如何演变的。


近年发展起来的机器智能系统能够利用海量的数据,但在上世纪90年代中期,根本还没有这些数据,互联网也还处于起步阶段。 随着存储和计算方面的进步的出现,快速,经济地存储及处理大量数据成为可能。 不过,这些工程上的进步本身并不能解释人工智能的快速发展。


开源的机器学习库和框架虽然看起来“没什么动静”,但是起到了同等重要的作用。 15年前,在科学计算框架Torch发布BSD许可证时,里面包括的许多算法现在的数据科学家还在使用,包括深度学习,多层感知器,支持向量机和K最近邻算法。


软件许可证是一种格式合同,由软件作者与用户签订,用以规定和限制软件用户使用软件(或其源代码)的权利,以及作者应尽的义务。常用的软件许可证包括:GPL、BSD许可证、私权软件许可证。


最近,像TensorFlow和PyTorch这样的开源项目也为这个共享的知识库做出了宝贵的贡献,让不同背景的软件工程师能够开发新的模型和应用程序。 计算机域的专家需要大量的数据来创建和训练这些模型。因此,大公司拥有巨大的优势,因为他们可以利用现有的数据网络效应。


传感器数据和处理能力


自20世纪60年代初以来,就已经有光的探测和测距(激光雷达)传感器了。这些传感器已经在地理信息学,考古学,林业,大气研究,国防和其他行业中业以及经投入使用。近年来,激光雷达也已成为自主导航的首选传感器。


Google无人驾驶车辆上的激光雷达传感器每秒可产生750MB的数据。机上的8台计算机视觉摄像机每秒钟产生1.8GB的数据。所有这些数据都需要实时处理,但是集中计算(在云端)在实时的高速情况下,还不够快。为了解决这个计算不够快的瓶颈,我们通过分散计算,来提高处理能力。



目前大多数自主车辆的解决方案是使用两个车载“盒子”,每个盒子都配备Intel Xeon E5 CPU和4到8个Nvidia K80 GPU加速器。最高性能表现情况下,这消耗5000W以上的电力。 Nvidia新推出的Drive PX Pegasus等硬件创新技术也开始尝试更有效地突破这一瓶颈。


AI发展临界点


我们处理传感器数据和融合各种数据模式的能力将继续推动智能机器人的发展。为了使这种传感器融合能实时发生,需要把机器学习和深度学习模型分散开来。当然,分散式AI对分散式处理器的要求更为复杂。


值得庆幸的是,机器学习和深度学习计算效率正不断提高。 Graphcore的智能处理单元(IPU)和Google的张量处理单元(TPU)等成本也不断降低,在规模上加速神经网络的性能的提高。


在其他方面,IBM正在开发模拟大脑解剖学的神经形态晶片。芯片雏形使用一百万个神经元,每个神经元有256个突触。该系统特别适合于解读感官数据,因为它的设计是模拟人类大脑解释和分析感知数据的方式。



所有这些来自传感器的数据,意味着我们正处于机器人网络效应的临界点,这个转变将对人工智能,机器人及其各种应用产生巨大影响。


数据新世界


机器人网络效应的影响,不仅在于新技术和新机器能够更快地处理更大的数据量,而且还能处理更多不同类型的数据。新的传感器将能够检测和捕获让我们“意想不到”的数据,因为人类感知的局限性,这些数据我们可能根本想象不到。机器和智能设备会把丰富的数据传送到云端和邻近的代理,为决策提供信息,加强协调,并在模型改进中持续发挥重要作用。


这些进步比许多人意识到的要快得多。例如,Aromyx使用受体和先进的机器学习模型来构建传感器系统,并为气味和口味数据的采集,索引和搜索提供平台。该公司的EssenceChip是一种一次性传感器,输出生化信号。这些信号与当人类闻到或品尝食物或饮料时,发送到人类大脑的信号是一样的。


Open Bionics 正在开发机器人仿生手臂,仿生手臂依靠从手臂套筒内的传感器收集触觉数据,借此来控制手和手指的移动。这种非侵入式设计能够通过机器学习模型,将电极感测到的精细肌肉张力,转化为仿生手中的复杂运动反应。



传感器数据将有助于推动AI的发展。 AI系统也同时扩展我们处理数据的能力,并帮助我们发现这些数据的创造性用途。 除此之外,这也将激发新的机器人外形设计要素,帮助我们收集更多不同模式的数据。 当我们以新的方式提升“看”的能力时,我们周围的看似“日常”的世界,很快就会成为下一个发现的前沿。


未来智能实验室致力于研究互联网与人工智能未来发展趋势,观察评估人工智能发展水平,由中国科学院虚拟经济与数据科学研究中心刘锋、石勇、和刘颖创建。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;构建互联网(城市)云脑架构,形成科技趋势标杆企业库并应用与行业与智慧城市的智能提升。


  如果您对实验室的研究感兴趣,欢迎支持和加入我们。扫描以下二维码或点击本文左下角“阅读原文”


本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/498006.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

比AlphaGo Zero更强的AlphaZero来了!8小时解决一切棋类!

来源:本文作者PENG Bo(http://t.cn/RY3MKSS),本文首发于作者的知乎专栏《技术备忘录》 读过AlphaGo Zero论文的同学,可能都惊讶于它的方法的简单。另一方面,深度神经网络,是否能适用于国际象棋这…

直接插入排序比较次数_程序员必须要会的直接插入排序算法

算法主要衡量标准时间复杂度(运行时间)在算法时间复杂度维度,我们主要对比较和交换的次数做对比,其他不交换元素的算法,主要会以访问数组的次数的维度做对比。其实有很多同学对于算法的时间复杂度有点模糊,分不清什么所谓的 O(n),…

脑机接口技术如何具体实现?

来源:神经科技前沿 概要:人类心灵能够与人工智能、机器人和其它心灵通过脑机接口技术(BCI)直接相连,从而超越人类寿命的限制吗? 就像古希腊人梦想在天空翱翔一样,今天的人们总是梦想着将大脑与机器融合来解决令人讨厌的死亡问题。…

BPP 相关——02

BPP项目 HT 部分完成小结: 1、Action 类怎么写? 现在的做法是Action 层直接与 dao 层耦合,所有的功能都在 Action 类中完成。 缺点:如果 Action1 与 Action2 两个类有部分功能重复,在“避免重复代码”这样的原则下&am…

scrapy读取mysql数据库_python3实战scrapy获取数据保存至MySQL数据库

python3使用scrapy获取数据然后保存至MySQL数据库,我上一篇写了如何爬取数据保存为csv文件,这一篇将会写如何将数据保存至数据库。思路大都一样,我列一个思路:1:获取腾讯招聘网。2:筛选信息获取我们想要的。…

共享单车技术含量,一篇文章全说透了!

来源:物联网智库 概要:共享单车已经成为了中国新四大发明之一,被输往了世界上很多城市。 共享单车已经成为了中国新四大发明之一,被输往了世界上很多城市。在我看来,虽然共享单车的实现并不复杂,其实质是一…

PostgreSQL 分页——示例

SQL 语句 select * from ( select * from logizard.t04_case_dtl_wk where slip_id order100~1~l001 order by case_id ) as T04 limit 5 offset 0 ;结果图

人工智能企业自动化的关键现状和战略影响

来源:腾股创投(微信ID: tengguvc) 人工智能和机器学习在亚马逊 Alexa 等面向消费者的应用领域取得了长足的进步,在企业内的的部署也不断涌现。 关于 AI 自动化对企业的影响范围和影响程度的意见不一。 一方面,牛津大学…

Mac 右键拷贝文件失效

问题:Mac 右键拷贝文件失效,有时候拷贝可以成功,有时候拷贝不成功 发现问题所在:开了百度翻译的划词, 解决:把划词关掉就好了,或者设置划词快捷键翻译就好了,反正就不要一划就翻译那…

为什么神经网络会把乌龟识别成步枪?现在的 AI 值得信任吗?

来源:36Kr 概要:人工智能的快速发展的确值得欣喜,但快速发展的背后还有各种不完善的地方。 人工智能的快速发展的确值得欣喜,但快速发展的背后还有各种不完善的地方。比如,前不久麻省理工学院的一些学生,利…

Struts2自定义标签——示例

自定义Button功能描述&#xff1a; <tangs:button items"apple,orange,banana"/> 解析后为&#xff1a; <input type"button" name"apple" value"apple" /> <input type"button" name"orange…

深度学习的核心:掌握训练数据的方法

来源&#xff1a;云栖社区 概要&#xff1a;今天我们将讨论深度学习中最核心的问题之一&#xff1a;训练数据。 Hello World&#xff01; 今天我们将讨论深度学习中最核心的问题之一&#xff1a;训练数据。深度学习已经在现实世界得到了广泛运用&#xff0c;例如&#xff1a;无…

python停止运行tensorflow_Tensorflow 开启训练后卡死

毕设做深度学习的课题&#xff0c;使用到了TensorFlow&#xff0c;但训练时出现了问题&#xff1a;跑脚本开启训练之后&#xff0c;跑完不到100次就会卡死&#xff0c;然后显示python已停止工作这是我的训练的代码# 导入数据集import load_record# 导入TensorFlow并创建Session…

Struts2自定义标签(template)——示例

来源&#xff1a;http://www.blogjava.net/natlive/archive/2009/05/21/271890.html Struts2 的UITag原理&#xff1a; Struts2 UITag分三部份组成&#xff0c;一部份用于定义Tag的内容与逻辑的UIBean&#xff0c;一部份用于定义JSP Tag&#xff0c;也就是平时我们定义的那种&…

详解5G的六大关键技术

来源&#xff1a;电子产品世界 概要&#xff1a;在5G研发刚起步的情况下&#xff0c;如何建立一套全面的5G关键技术评估指标体系和评估方法&#xff0c;实现客观有效的第三方评估&#xff0c;服务技术与资源管理的发展需要&#xff0c;同样是当前5G技术发展所面临的重要问题。 …

为什么说特斯拉研发自动驾驶AI芯片应该引起注意?

来源&#xff1a;36Kr 概要&#xff1a;对于特斯拉而言&#xff0c;研发这款芯片配套算法本质上还是对率先将自动驾驶汽车商业化节点的争夺。 特斯拉Model 3的量产问题仍未彻底解决&#xff0c;CEO Elon Musk又抛出了自研自动驾驶芯片的重磅新闻。 Elon Musk和特斯拉Autopilo…

stm32usb做虚拟串口和键盘_关于stm32f103的USB虚拟串口程序移植

手边有个项目要用到USB传数据到主机&#xff0c;虽然有很多种方式&#xff0c;但最后还是选择了USB虚拟串口模式&#xff0c;将数据上传至pc端&#xff1b;然而这就涉及到了移植问题&#xff0c;在keil下官方已经给出了一个完整的USB TO VCOM的demo&#xff0c;但在我的主机上装…

4篇Nature同时揭示DNA自组装技术,离人造生命又近了一步

来源&#xff1a;刘盼科学网博客 概要&#xff1a; 科学家一直渴望利用自组装来构建人造物体&#xff0c;以达到细胞或细胞器的尺寸和复杂性&#xff0c;以便为研究&#xff0c;工程和医学应用构建合成的细胞机器。 iNature&#xff1a;自组装过程以各种形式存在于自然界中&…

均方距离计算公式_均值、方差、均方值、均方差计算

1、均值 均值表示信号中直流分量的大小,用E(x)表示。对于高斯白噪声信号而言,它的均值为0,所以它只有交流分量。 2、均值的平方 均值的平方,用{E(x)}^2表示,它表示的是信号中直流分量的功率。 3、均方值 均方值表示信号平方后的均值,用E(x^2)表示。均方值表示信号的平均功…