【实例分割】(一)Mask R-CNN详细介绍带python代码

目录

1.🍀🍀实例分割定义 

2.🍀🍀Mask R-CNN

3.🍀🍀经典的实例分割算法

4.🍀🍀Mask R-CNN python代码

整理不易,欢迎一键三连!!!


        实例分割是计算机视觉领域中的一种技术,它可以将一张图像中的所有物体分割出来,并给每个物体分配一个唯一的标识符。与语义分割相比,实例分割更进一步,能够区分出同一类别中不同物体之间的差异。例如,在一张照片中,实例分割可以将人、狗、汽车等不同的物体分割出来,并为每个人、狗、汽车分配一个独特的标识符,以便进一步对它们进行处理或跟踪。实例分割可以应用于很多领域,如自动驾驶、医学图像处理、安防监控等。

论文下载:paper

官网代码:github

1.🍀🍀实例分割定义 

        实例分割、语义分割和目标检测都属于计算机视觉中的重要任务,但它们有着不同的应用场景和解决问题的方式。

        实例分割:实例分割是指对于一张图片中的每个物体,将其分割出来并打上不同的标记。即在像素级别上对每个物体进行标记,区分出不同的实体。常见的实例分割算法有Mask R-CNN等。

        语义分割:语义分割是指在像素级别上将一幅图像进行分类,将图片中每个像素分类到对应物体或背景中。常见的语义分割算法有FCN、U-Net、DeepLab等。

        目标检测:目标检测是指在图像中寻找不同的物体,并确定它们的位置和大小。目标检测需要在保证准确性和效率的前提下,对物体进行分类和定位。常见的目标检测算法有基于区域的RCNN系列算法、YOLO系列算法、SSD等。

        它们之间的区别和联系如下:

区别:

  • 实例分割和语义分割的差别在于是否区分同类别物体的不同实例,而目标检测则是更加注重定位和分类的同时,不进行像素级别的分割。
  • 实例分割和语义分割都是基于像素级别的分类,而目标检测是基于物体的定位和分类。

联系:

  • 在实例分割和目标检测中,都需要对物体进行定位和分类,因此在一些应用上,可以将实例分割视为一种特殊的目标检测。
  • 实例分割和语义分割同样可以用于场景分析、自动驾驶等应用场景,而目标检测可以被认为是在实例分割和语义分割的基础上进一步提取物体位置和大小信息的过程。

2.🍀🍀Mask R-CNN

        Mask R-CNN是一个基于Faster R-CNN的框架,用于图像实例分割任务。它通过在Faster R-CNN中添加一个分支来实现实例分割。Mask R-CNN的流程如下:

  1. 在输入图像上运行卷积网络以提取特征。可以使用训练好的网络,如ResNet或VGG等。

  2. 使用ROI pooling在特征图上对候选目标区域进行裁剪和变形,在每个目标区域上运行分类器和边界框回归器,以预测目标类别和位置。

  3. 在每个目标区域上添加一个分支,预测目标的掩模。掩模分支是一个全卷积网络,它输出与目标大小相同的二进制掩模。

        通过这种方式,Mask R-CNN将目标检测和实例分割结合起来,实现了同时检测和分割图像中的目标。


3.🍀🍀经典的实例分割算法

经典的实例分割算法包括:

  1. Mask R-CNN:基于 Faster R-CNN,通过添加矢量掩模层实现实例分割。
  2. FCIS(Fully Convolutional Instance Segmentation):针对 Mask R-CNN 的瓶颈,FCIS 直接在全卷积特征图中进行分割,避免了卷积和池化的多次重复计算操作。
  3. YOLACT(You Only Look At Coefficients):使用交互式注意力机制,在尽可能少的计算步骤中预测实例分割掩模。
  4. PANet(Path Aggregation Network):通过级联多个特征图路径和特征聚合模块,提高了实例分割的精度和速度。
  5. GMask(Guided Mask):基于 Mask R-CNN 和注意力机制,引入语义分割特征辅助实例分割,提高实例分割的精度。
  6. DeepMask:利用全卷积网络和基于锚点的模板匹配方法,在像素级别上进行分割。
  7. SharpMask:在 DeepMask 的基础上,使用多层级的特征图和分层聚合模块,提高了分割质量和速度。
  8. InstanceFCN:将实例分割转化为实例级别的像素分类问题,通过全卷积网络实现分割。

        这些算法在实例分割领域取得了重要的突破,并被广泛使用和应用。

        Mask R-CNN是一种用于目标检测和实例分割的深度学习算法,它是在Faster R-CNN的基础上进一步扩展的,具有更准确的分割能力和更快的速度。在Python语言中,可以使用TensorFlow,Keras或PyTorch等深度学习框架来实现Mask R-CNN算法。


4.🍀🍀Mask R-CNN python代码

官网代码:github

        以下是使用TensorFlow和Keras实现Mask R-CNN算法的步骤:

  1. 安装TensorFlow和Keras库。
  2. 下载并安装Mask R-CNN模型库,例如:https://github.com/matterport/Mask_RCNN
  3. 导入必要的库和模块,例如:
import os
import sys
import random
import math
import numpy as np
import tensorflow as tf
import keras
from keras import backend as K
from keras.layers import Input
from keras.models import Model
import mrcnn.model as modellib
from mrcnn import visualize, utils

  1. 定义配置类,包括模型训练参数和数据集路径等信息,例如:
class Config():NAME = "my_mask_rcnn"GPU_COUNT = 1IMAGES_PER_GPU = 1NUM_CLASSES = 1 + 1  # background + objectIMAGE_MAX_DIM = 1024IMAGE_MIN_DIM = 800STEPS_PER_EPOCH = 100VALIDATION_STEPS = 50BACKBONE = "resnet50"DETECTION_MIN_CONFIDENCE = 0.9DETECTION_NMS_THRESHOLD = 0.2LEARNING_RATE = 1e-4LEARNING_MOMENTUM = 0.9

  1. 实例化配置类和训练数据集,例如:
config = Config()
dataset_train = MyDataset()
dataset_train.load_data("train")  # 加载训练数据集
dataset_train.prepare()

  1. 定义模型结构,包括输入层、ResNet网络、FPN网络、RPN网络、ROI Pooling层、分类网络、回归网络和掩码网络等模块,例如:
input_image = Input(shape=[None, None, 3], name="input_image")
input_image_meta = Input(shape=[config.IMAGE_META_SIZE], name="input_image_meta")
input_anchors = Input(shape=[None, 4], name="input_anchors")resnet = keras.applications.resnet50.ResNet50(input_tensor=input_image, include_top=False)
fpn = modellib.FPN(input=resnet.output, pyramid_size=256)rpn = modellib.RPN(input=fpn.output, anchors=config.ANCHORS_PER_IMAGE)
layer_roi = modellib.RegionProposalNetwork(input=rpn.output, anchors=config.ANCHORS_PER_IMAGE, proposal_count=config.POST_NMS_ROIS_INFERENCE)
roi_pooling = modellib.ROIPooling(input=(fpn.output, layer_roi), pool_size=[7, 7])
classifier = modellib.FPNClassifier(input=roi_pooling.output, roi_count=config.TRAIN_ROIS_PER_IMAGE, fc_layers_size=1024)
regressor = modellib.FPNRegressor(input=roi_pooling.output, roi_count=config.TRAIN_ROIS_PER_IMAGE, fc_layers_size=1024)
mask = modellib.MaskSubnet(input=roi_pooling.output, roi_count=config.TRAIN_ROIS_PER_IMAGE, mask_shape=config.MASK_SHAPE)

  1. 定义模型输出,包括分类、回归和掩码的输出,例如:
output_rois, output_class, output_regr, output_mask = modellib.FPNClassifier().([layer_roi, roi_pooling.output])

  1. 定义损失函数,包括分类、回归和掩码的损失函数,例如:
loss_class = modellib.smooth_l1_loss_bbox_batch(output_class, input_class_ids)
loss_bbox = modellib.smooth_l1_loss_bbox_batch(output_regr, input_bbox)
loss_mask = modellib.binary_crossentropy(input_mask, output_mask)

  1. 定义优化器和训练函数,例如:
optimizer = keras.optimizers.SGD(lr=config.LEARNING_RATE, momentum=config.LEARNING_MOMENTUM, clipnorm=5.0)
train_model = keras.models.Model([input_image, input_image_meta, input_anchors, input_class_ids, input_bbox, input_mask],[loss_class, loss_bbox, loss_mask])
train_model.compile(optimizer=optimizer, loss=[modellib.identity_loss, modellib.identity_loss, modellib.identity_loss])

  1. 开始模型训练,例如:
train_generator = modellib.data_generator(dataset_train, config, shuffle=True, augment=True)
train_model.fit_generator(train_generator, steps_per_epoch=config.STEPS_PER_EPOCH, epochs=10, callbacks=None)

        这些步骤是实现Mask R-CNN算法的基本流程,在实际应用中还需要根据实际情况进行调整和优化。

整理不易,欢迎一键三连!!!

送你们一条美丽的--分割线--


🌷🌷🍀🍀🌾🌾🍓🍓🍂🍂🙋🙋🐸🐸🙋🙋💖💖🍌🍌🔔🔔🍉🍉🍭🍭🍋🍋🍇🍇🏆🏆📸📸⛵⛵⭐⭐🍎🍎👍👍🌷🌷

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49633.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C++ vector

前言&#xff1a; vector的部分源码&#xff1a; &#xff08;做过删除&#xff0c;留下关键信息&#xff09; vector的使用 构造函数&#xff1a; 1 无参构造 vector<int> v1; 2 构造并初始化n个val vector<int> v2(5,1);3 拷贝构造 vector<int> v3…

4-4 Representing text Exercise

本文所用资料下载 一. Representing text Let’s load Jane Austen’s Pride and Prejudice. We first split our text into a list of lines and pick an arbitrary line to focus on: with open(D:jane-austen/1342-0.txt, encodingutf8) as f:text f.read() lines text.…

继承(C++)

继承 一、初识继承概念“登场”语法格式 继承方式九种继承方式组合小结&#xff08;对九种组合解释&#xff09; 二、继承的特性赋值转换 一一 切片 / 切割作用域 一一 隐藏 / 重定义 三、派生类的默认成员函数派生类的默认成员函数1. 构造函数2. 拷贝构造3. 赋值运算符重载4. …

Centos7查看磁盘和CUP统计信息iostat命令

Centos7查看磁盘和CUP统计信息iostat命令 Centos7内存高|查看占用内存命令 docker实战(一):centos7 yum安装docker docker实战(二):基础命令篇 docker实战(三):docker网络模式(超详细) docker实战(四):docker架构原理 docker实战(五):docker镜像及仓库配置 docker实战(六…

Spring Clould 注册中心 - Eureka,Nacos

视频地址&#xff1a;微服务&#xff08;SpringCloudRabbitMQDockerRedis搜索分布式&#xff09; Eureka 微服务技术栈导学&#xff08;P1、P2&#xff09; 微服务涉及的的知识 认识微服务-服务架构演变&#xff08;P3、P4&#xff09; 总结&#xff1a; 认识微服务-微服务技…

9.Sentinel哨兵

1.Sentinel Sentinel&#xff08;哨兵&#xff09;是由阿里开源的一款流量控制和熔断降级框架&#xff0c;用于保护分布式系统中的应用免受流量涌入、超载和故障的影响。它可以作为微服务架构中的一部分&#xff0c;用于保护服务不被异常流量冲垮&#xff0c;从而提高系统的稳定…

多线程+隧道代理:提升爬虫速度

在进行大规模数据爬取时&#xff0c;爬虫速度往往是一个关键问题。本文将介绍一个提升爬虫速度的秘密武器&#xff1a;多线程隧道代理。通过合理地利用多线程技术和使用隧道代理&#xff0c;我们可以显著提高爬虫的效率和稳定性。本文将为你提供详细的解决方案和实际操作价值&a…

【数据库】详解数据库架构优化思路(两主架构、主从复制、冷热分离)

文章目录 1、为什么对数据库做优化2、双主架构双主架构的工作方式如下&#xff1a;双主架构的优势包括&#xff1a;但是一般不用这种架构&#xff0c;原因是&#xff1a; 3、主从复制主从复制的工作方式如下&#xff1a;主从复制的优势包括&#xff1a;主从复制的缺点 4、冷热分…

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现NGO-SVM北方苍鹰算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基…

机器学习知识点总结:什么是EM(最大期望值算法)

什么是EM(最大期望值算法) 在现实生活中&#xff0c;苹果百分百是苹果&#xff0c;梨百分白是梨。 生活中还有很多事物是概率分布&#xff0c;比如有多少人结了婚&#xff0c;又有多少人有工作&#xff0c; 如果我们想要调查人群中吸大麻者的比例呢&#xff1f;敏感问题很难得…

【VR】SteamVR2.0的示例场景在哪里

&#x1f4a6;本专栏是我关于VR开发的笔记 &#x1f236;本篇是——在哪里可以找到SteamVR2.0的示例场景 SteamVR2.0的示例场景在哪里 1. 逐步打开方式2. 快速打开方式 1. 逐步打开方式 Assets——SteamVR——InteractionSystem——Samples——>Interactions_Example 2. 快…

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测

多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测 目录 多维时序 | MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测预测效果基本介绍模型描述程序设计参考资料 预测效果 基本介绍 MATLAB实现KOA-CNN-BiGRU-Attention多变量时间序列预测&#xff0c;KOA-…

Postman项目实战一

项目简介&#xff1a;外卖任务委派系统 测试脚本&#xff1a; 登录&#xff0c;获取token创建任务&#xff0c;获取任务id根据id&#xff0c;修改任务根据id&#xff0c;查询任务根据id&#xff0c;删除任务根据id&#xff0c;验证任务已被删除 步骤&#xff1a; 1.创建Col…

工业生产全面感知!工业感知云来了

面向工业企业数字化转型需求&#xff0c;天翼物联基于感知云平台创新能力和5G工业物联数采能力&#xff0c;为客户提供工业感知云服务&#xff0c;包括工业泛协议接入、感知云工业超轻数采平台、工业感知数据治理、工业数据看板四大服务&#xff0c;构建工业感知神经系统新型数…

C++(Qt)软件调试---gdb调试入门用法(12)

gdb调试—入门用法&#xff08;1&#xff09; 文章目录 gdb调试---入门用法&#xff08;1&#xff09;1、前言1.1 什么是GDB1.2 为什么要学习GDB1.3 主要内容1.4 GDB资料 2、C/C开发调试环境准备3、gdb启动调试1.1 启动调试并传入参数1.2 附加到进程1.3 过程执行1.4 退出调试 4…

计算机竞赛 卷积神经网络手写字符识别 - 深度学习

文章目录 0 前言1 简介2 LeNet-5 模型的介绍2.1 结构解析2.2 C1层2.3 S2层S2层和C3层连接 2.4 F6与C5层 3 写数字识别算法模型的构建3.1 输入层设计3.2 激活函数的选取3.3 卷积层设计3.4 降采样层3.5 输出层设计 4 网络模型的总体结构5 部分实现代码6 在线手写识别7 最后 0 前言…

mysql------做主从复制,读写分离

1.为什么要做主从复制&#xff08;主从复制的作用&#xff09; 做数据的热备&#xff0c;作为后备数据库&#xff0c;主数据库服务器故障后&#xff0c;可切换到从数据库继续工作&#xff0c;避免数据丢失。 架构的扩展。业务量越来越大,I/O访问频率过高&#xff0c;单机无法满…

shell和Python 两种方法分别画 iostat的监控图

在服务器存储的测试中,经常需要看performance的性能曲线&#xff0c;这样最能直接观察HDD或者SSD的性能曲线。 如下这是一个针对HDD跑Fio读写的iostat监控log,下面介绍一下分别用shell 和Python3 写画iostat图的方法 1 shell脚本 环境:linux OS gnuplot工具 第一步 :解析iosta…

DETR-《End-to-End Object Detection with Transformers》论文精读笔记

DETR&#xff08;基于Transformer架构的目标检测方法开山之作&#xff09; End-to-End Object Detection with Transformers 参考&#xff1a;跟着李沐学AI-DETR 论文精读【论文精读】 摘要 在摘要部分作者&#xff0c;主要说明了如下几点&#xff1a; DETR是一个端到端&am…

测试工具coverage的高阶使用

在文章Python之单元测试使用的一点心得中&#xff0c;笔者介绍了自己在使用Python测试工具coverge的一点心得&#xff0c;包括&#xff1a; 使用coverage模块计算代码测试覆盖率使用coverage api计算代码测试覆盖率coverage配置文件的使用coverage badge的生成 本文在此基础上…