推荐|深度学习领域引用量最多的前20篇论文简介

640?wx_fmt=png&wxfrom=5&wx_lazy=1

来源:全球人工智能

作者:Pedro Lopez,数据科学家,从事金融与商业智能。

译者:海棠,审阅:袁虎。


640?wx_fmt=png&wxfrom=5&wx_lazy=1


深度学习是机器学习和统计学交叉领域的一个子集,在过去的几年里得到快速的发展。强大的开源工具以及大数据爆发使其取得令人惊讶的突破进展。本文根据微软学术(academic.microsoft.com)的引用量作为评价指标,从中选取了20篇顶尖论文。注意,引用量会随着时间发生快速的变化,本文参考的是本文发表时候的引用量。


在这份清单中,超过75%的文章都提到了深度学习和神经网络,尤其是卷积神经网络(CNN),其中,50%的文章是计算机领域模式识别应用。随着硬件性能、数据量及开源工具的发展,使用基于GPU的工具箱,如TensorFlow、Theano等,有利于数据科学家和机器学习工程师扩展相应的应用领域。


640?wx_fmt=png


1.Deep Learning,Yann L., Yoshua B. & Geoffrey H. (2015) (引用量: 5,716)


本文是深度学习大牛Hinton的开山之作,引用量高达5700多次。在这篇文章中,提出了深度学习的方法,它允许由多个处理层组成的计算模型来学习具有多个抽象层次的数据表示。这些方法极大地促进了语言识别、视觉物体识别、目标检测以及药物发现、基因组合灯许多领域的进展。


论文地址:


https://www.cs.toronto.edu/~hinton/absps/NatureDeepReview.pdf?spm=a2c4e.11153940.blogcont576283.17.3ac27677LdbpjU&file=NatureDeepReview.pdf


2.TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, by Martín A., Ashish A. B., Eugene B. C., et al. (2015) (引用量: 2,423)


这篇文章发布了TensorFlow工具箱,该工具箱使用非常灵活,十分受研究者的追捧,很多研究者认为你该工具箱在之后的研究中会占据主导地位。TensorFlow可以用来表示各种各样的算法,包括深层神经网络模型以及推理算法等。TensorFlow已经被用于研究,并将计算机学习系统部署到计算机科学和其它的多个领域,包括语言识别、计算机视觉、机器人、信息检索、自然语言处理、地理信息提取等。


论文地址:


http://download.tensorflow.org/paper/whitepaper2015.pdf?spm=a2c4e.11153940.blogcont576283.18.3ac27677XarSxP&file=whitepaper2015.pdf


3.TensorFlow: a system for large-scale machine learning, by Martín A., Paul B., Jianmin C., Zhifeng C., Andy D. et al. (2016) (引用量: 2,227)


TensorFlow支持各种应用,对深层神经网络的训练和推理能力成为了研究者的关注点。谷歌在其一些产品中使用了TensorFlow,并将其公开为一个开源项目,目前已被广泛用于机器学习的研究中。


论文地址:


https://www.usenix.org/legacy/system/files/conference/osdi16/osdi16-abadi.pdf%20rel=?spm=a2c4e.11153940.blogcont576283.19.3ac27677wXFSLT&file=osdi16-abadi.pdf%20rel=


4.Deep learning in neural networks, by Juergen Schmidhuber (2015) (引用量: 2,196)


这篇文中是一个综述类文章,总结了深度学习和神经网络的发展历史。浅层和深层学习器是通过网络层数的数量区分,并且详细讲解了有监督学习(简要介绍反向传播算法的历史)、无监督学习、强化学习、进化计算以及深层编码网络。


论文地址:


https://arxiv.org/pdf/1404.7828.pdf?spm=a2c4e.11153940.blogcont576283.20.3ac27677wM2vCk&file=1404.7828.pdf


5.Human-level control through deep reinforcement learning, by Volodymyr M., Koray K., David S., Andrei A. R., Joel V et al (2015) (引用量: 2,086)


这篇文章主要是使用深层神经网络的最新进展——强化学习,并训练了一种新颖且智能代理,被称为Q网络。Q网络使用端到端强化学习直接从高维感官输入学习到成功的策略,并使用经典游戏Atari 2600对其进行测试,结果表明其效果非常好。


论文地址:


https://web.stanford.edu/class/psych209/Readings/MnihEtAlHassibis15NatureControlDeepRL.pdf?spm=a2c4e.11153940.blogcont576283.21.3ac27677khlbo4&file=MnihEtAlHassibis15NatureControlDeepRL.pdf


6.Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, by Shaoqing R., Kaiming H., Ross B. G. & Jian S. (2015) (引用量: 1,421)


这篇文章的主要工作是引入了区域推荐网络(RPN),该网络能够与检测网络共享全图像卷积特征,从而使无成本的区域推荐成为可能。一个RPN网络是一个全卷积网络,同时预测每个位置对象的范围和其分数。


论文地址:


https://arxiv.org/pdf/1506.01497.pdf?spm=a2c4e.11153940.blogcont576283.22.3ac276779Ttljn&file=1506.01497.pdf


7.Long-term recurrent convolutional networks for visual recognition and description, by Jeff D., Lisa Anne H., Sergio G., Marcus R., Subhashini V. et al. (2015) (引用量: 1,285)


与当前假设固定时空感受野或简单时间平均序列的模型处理相比而言,递归卷积模型是“双份深度”,这是由于该模型是“时间层”和“空间层”的组合。


论文地址:


https://arxiv.org/pdf/1411.4389.pdf?spm=a2c4e.11153940.blogcont576283.23.3ac27677bXpou7&file=1411.4389.pdf


8.MatConvNet: Convolutional Neural Networks for MATLAB, by Andrea Vedaldi & Karel Lenc (2015) (引用量: 1,148)


本文是针对MATLAB开发的深度学习工具箱,它揭露了CNN模型也可以通过简单使用MATLAB函数完成搭建。该工具箱提供了卷积层、池化层等功能。该文档简单介绍了CNN,并说明如何在matconvnet工具箱中实现模型的搭建,并给出了每个计算块的技术细节。


论文地址:


https://arxiv.org/pdf/1412.4564.pdf?spm=a2c4e.11153940.blogcont576283.24.3ac27677k3MDgU&file=1412.4564.pdf


9.Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks, by Alec R., Luke M. & Soumith C. (2015) (引用量: 1,054)


在这篇文章中,希望通过CNN缩小有监督学习和无监督学习二者之间的差距。引入了一类新的CNN模型,被称作深层卷积生成对抗网络(DCGANs)。该网络具有一定体系结构约束,也被证明是无监督学习问题中一种有效方法。


论文地址:


https://arxiv.org/pdf/1511.06434.pdf?spm=a2c4e.11153940.blogcont576283.25.3ac276771TzGAy&file=1511.06434.pdf


10.U-Net: Convolutional Networks for Biomedical Image Segmentation, by Olaf R., Philipp F. &Thomas B. (2015) (引用量: 975)


对于深度学习而言,人们大多有个共识——深层网络训练成功需要依赖于大量的训练样本。而在本篇文章中,提出了一种新的网络和训练策略,其训练策略依赖于数据增强,使其可以更高效地使用现有样本。


论文地址:


https://arxiv.org/pdf/1505.04597.pdf?spm=a2c4e.11153940.blogcont576283.26.3ac276770IHiyG&file=1505.04597.pdf


11.Conditional Random Fields as Recurrent Neural Networks, by Shuai Z., Sadeep J., Bernardino R., Vibhav V. et al (2015) (引用量: 760)


在这篇文章中,引入了一种新的模型,它将卷积神经网络(CNN)与条件随机场(CRF)二者的优点相结合,构造出RNN网络。


论文地址:


http://www.robots.ox.ac.uk/~szheng/papers/CRFasRNN.pdf?spm=a2c4e.11153940.blogcont576283.27.3ac27677wwmxH5&file=CRFasRNN.pdf


12.Image Super-Resolution Using Deep Convolutional Networks, by Chao D., Chen C., Kaiming H. & Xiaoou T. (2014) (引用量: 591)


这篇文章采用方法是直接学习低分辨率到高分辨率图像的端到端映射,该映射被表示为一个深层卷积神经网络(CNN),它以低分辨率图像作为输入,输出的是高分辨率图像。


论文地址:


https://arxiv.org/pdf/1501.00092.pdf?spm=a2c4e.11153940.blogcont576283.28.3ac27677uoRVt5&file=1501.00092.pdf


13.Beyond short snippets: Deep networks for video classification, by Joe Y. Ng, Matthew J. H., Sudheendra V., Oriol V., Rajat M. & George T. (2015) (引用量: 533)


在这篇文章中,提出了将CNN与LSTM结合在一起对视频数据进行特征提取,单帧的图像信息通过CNN获取特征,然后将CNN的输出按时间顺序通过LSTM,最终将视频数据在空间和时间维度上进行了特征表达。


论文地址:


https://arxiv.org/pdf/1503.08909.pdf?spm=a2c4e.11153940.blogcont576283.29.3ac27677qJnF3L&file=1503.08909.pdf


14.Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, by Christian S., Sergey I., Vincent V. & Alexander A A. (2017) (引用量: 520)


卷积网络变得越来越深,网络模型也变得越来越复杂。谷歌公司提出的Inception-v4网络结构是近年来图像识别领域取得的最大进展。该网络结构具有三个残差网络和一个Inception-v4结构单元。在ImageNet挑战赛(CLS)top-5中实现3.08%的错误率。


论文地址:


https://arxiv.org/pdf/1602.07261.pdf?spm=a2c4e.11153940.blogcont576283.30.3ac27677uhbfsE&file=1602.07261.pdf


15.Salient Object Detection: A Discriminative Regional Feature Integration Approach, by Huaizu J., Jingdong W., Zejian Y., Yang W., Nanning Z. & Shipeng Li. (2013) (引用量: 518)


在这篇文章中,将显著图计算转化为一个回归问题。采用的方法是基于多层次的图像分割,并利用监督学习方法将区域特征向量映射为一个显著性分数。


论文地址:


https://arxiv.org/pdf/1410.5926.pdf?spm=a2c4e.11153940.blogcont576283.31.3ac27677YZbKox&file=1410.5926.pdf


16.Visual Madlibs: Fill in the Blank Description Generation and Question Answering, by Licheng Y., Eunbyung P., Alexander C. B. & Tamara L. B. (2015) (引用量: 510)


在这篇文章中,介绍了一个新的数据集——Visual Madlibs。该数据集包含360001个针对10738幅图像的自然语言描述,它是在空白模板中利用自动生成进行收集,收集的是有针对性的描述,比如人和物体、外貌、活动和互动、以及对一般场景或更广阔背景的推论。


论文地址:


https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Yu_Visual_Madlibs_Fill_ICCV_2015_paper.pdf?spm=a2c4e.11153940.blogcont576283.32.3ac27677NTzhEK&file=Yu_Visual_Madlibs_Fill_ICCV_2015_paper.pdf


17.Asynchronous methods for deep reinforcement learning, by Volodymyr M., Adrià P. B., Mehdi M., Alex G., Tim H. et al. (2016) (引用量: 472)


A3C算法是AC算法的异步变体,在Atari领域是最先进的算法。训练时候采用的多核CPU,而不是单个GPU,节约了一半的时间。此外,还发现A3C算法在各种各样的连续电机控制问题上性能表现优异。


论文地址:


http://proceedings.mlr.press/v48/mniha16.pdf?spm=a2c4e.11153940.blogcont576283.33.3ac27677kBRXJT&file=mniha16.pdf


18.Theano: A Python framework for fast computation of mathematical expressions., by by Rami A., Guillaume A., Amjad A., Christof A. et al (2016) (引用量: 451)


Theano是一个Python库,它允许使用者定义、优化以及有效地评估涉及多维数组的数学表达式。自推出以来,它一直是最常用的CPU和GPU数学编译器,尤其是在机器学习社区中显示出其性能的稳定提升。


论文地址:


https://arxiv.org/pdf/1605.02688.pdf?spm=a2c4e.11153940.blogcont576283.34.3ac27677blRucu&file=1605.02688.pdf


19.Deep Learning Face Attributes in the Wild, by Ziwei L., Ping L., Xiaogang W. & Xiaoou T. (2015) (引用量: 401)


该框架不仅大大提升了系统的性能,而且表明了学习人脸表征是有价值的事实。(1)展示了人脸定位(LNET)和属性预测(ANET)可以通过不同的预训练方法改进;(2)尽管只微调了LNet过滤器,但它们在整个图像上的响应图对人脸位置有很强的指示性。


论文地址:


https://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Liu_Deep_Learning_Face_ICCV_2015_paper.pdf?spm=a2c4e.11153940.blogcont576283.35.3ac27677CwhXcF&file=Liu_Deep_Learning_Face_ICCV_2015_paper.pdf


20.Character-level convolutional networks for text classification, by Xiang Z., Junbo Jake Z. & Yann L. (2015) (引用量: 401)


这篇文章使用字符级卷积神经网络(Char-CNN)实现文本的分类,并构建了几个大规模数据集,实验结果表明,字符级卷积神经网络可以实现很好的性能。


论文地址:


http://papers.nips.cc/paper/5782-character-level-convolutional-networks-for-text-classification.pdf?spm=a2c4e.11153940.blogcont576283.36.3ac276778WChsu&file=5782-character-level-convolutional-networks-for-text-classification.pdf


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。

  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/495907.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java8 Stream详解~收集(collect)

collect,收集,可以说是内容最繁多、功能最丰富的部分了。从字面上去理解,就是把一个流收集起来,最终可以是收集成一个值也可以收集成一个新的集合。 1 归集(toList/toSet/toMap) 因为流不存储数据,那么在流中的数据完…

英国上议院AI报告:没中美有钱,但我可以主导道德游戏规则设定

来源:网络大数据随着全球各国政府纷纷计划推出 AI 驱动下的未来,英国正准备承担一些学术和道德上的责任。最近,英国上议院 (House of Lords) 发布了一份183页的 报告《AI in the UK: ready, willing and able?》(《人工智能在英国&#xff1…

Java8 Stream详解~ 提取/组合

流也可以进行合并、去重、限制、跳过等操作。 public class StreamTest {public static void main(String[] args) {String[] arr1 { "a", "b", "c", "d" };String[] arr2 { "d", "e", "f", "g&…

Scrapy 下载器 中间件(Downloader Middleware)

Scrapy 下载器中间件官方文档:https://scrapy-chs.readthedocs.io/zh_CN/1.0/topics/downloader-middleware.html 官方 英文 文档:http://doc.scrapy.org/en/latest/topics/downloader-middleware.html#topics-downloader-middleware Scrapy 扩展中间件…

15 个 JavaScript Web UI 库

转载http://news.csdn.net/a/20100519/218442.html 几乎所有的富 Web 应用都基于一个或多个 Web UI 库或框架,这些 UI 库与框架极大地简化了开发进程,并带来一致,可靠,以及高度交互性的用户界面。本文介绍了 15 个非常强大的 Java…

2018年技术展望--中文版

来源:199IT互联网数据中心每年,《埃森哲技术展望》报告融合顶尖技术研究团队、行业领袖以及全球数据调研结果,发布未来三年内或将对各行各业产生重大影响的技术趋势判断,作为企业布局新战略的指导。2018年的《埃森哲技术展望》报告…

彻底搞懂 Scrapy 的中间件

彻底搞懂Scrapy的中间件(一):https://www.cnblogs.com/xieqiankun/p/know_middleware_of_scrapy_1.html 彻底搞懂Scrapy的中间件(二):https://www.cnblogs.com/xieqiankun/p/know_middleware_of_scrapy_2.h…

华为:5G技术前景堪忧,运营商将很难从5G赚钱

来源:FT中文网、5G作者:卢卡斯、法尔兹丨英国《金融时报》。未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。未来智能实验室的主要工作包括:建立AI智能系统智商评测体系&#xff0…

解决log4j多个日志都写到一个文件

之前客户端程序由于Websockt包依赖的log4j,就用log4j写日志了,Web用的log4j2没毛病。用log4j的多个logger的日志都写到一个文件里了,查了很多资料都没解决。今天闲了解决一下。 最后好使的配置 # 设置日志根 log4j.rootLogger INFO,Except…

Scrapy 爬虫去重效率优化之 Bloom Filter的算法的对接

From:https://cloud.tencent.com/developer/article/1084962 Python分布式爬虫打造搜索引擎Scrapy精讲—将bloomfilter(布隆过滤器)集成到scrapy-redis中https://www.cnblogs.com/adc8868/p/7442306.html scrapy redis bloomfilter :https://github.co…

为什么 AI 工程师要懂一点架构?

作者 | 王咏刚(公众号ID:ban-qing-ren)AI 时代,我们总说做科研的 AI 科学家、研究员、算法工程师离产业应用太远,这其中的一个含义是说,搞机器学习算法的人,有时候会因为缺乏架构(In…

CompletableFuture详解~CompletionStage

CompletableFuture 分别实现两个接口 Future与 CompletionStage。 Future 接口大家都比较熟悉,这里主要讲讲 CompletionStage。 CompletableFuture 大部分方法来自CompletionStage 接口,正是因为这个接口,CompletableFuture才有如此强大功能…

Python 异步 IO 、协程、asyncio、async/await、aiohttp

From :廖雪峰 异步IO :https://www.liaoxuefeng.com/wiki/1016959663602400/1017959540289152 Python Async/Await入门指南 :https://zhuanlan.zhihu.com/p/27258289 Python 生成器 和 yield 关键字:https://blog.csdn.net/free…

智能语音简史:这场技术革命从哪开始?

来源:与非网1952年,贝尔实验室(Bell Labs)制造一台6英尺高自动数字识别机“Audrey”,它可以识别数字0~9的发音,且准确度高达90%以上。并且它对熟人的精准度高,而对陌生人…

精益创业~如何驾驭愿景

开发-测量-认知 反馈循环 循环中把总时间缩至最短 要把科学的方法运用到新创企业中,我们必须找到哪些假设是需要测试的。这是新创企业计划中风险最大的部分,这部分内容依赖 信念飞跃 Leap-of-Faith 式的大胆假设。其中最重要的两个假设是 价值假设 和 增…

Python 中 异步协程 的 使用方法介绍

静觅 崔庆才的个人博客:Python中异步协程的使用方法介绍:https://cuiqingcai.com/6160.html Python 异步 IO 、协程、asyncio、async/await、aiohttp:https://blog.csdn.net/freeking101/article/details/85286199 1. 前言 在执行一些 IO 密…

半导体终极武器光刻机:为何中国难望ASML项背?!有了全套图纸也做不出来

来源: XuS风险创投行指甲盖大小的芯片,密布千万电线,纹丝不乱,需要极端精准的照相机——光刻机。光刻机精度,决定了芯片的上限。EUV半导体业的终极武器这全靠总部后头那栋最高机密的巨型厂房,里头身穿无尘衣…

AI 与人类未来

来源:腾讯网摘要:今天的人类学,依托协同进化理论,对AI充满信心。 社会产生前后,人类遭遇的进化机制不同。产生之前,是纯粹生态的进化机制,由偶然性和适应性控制,由创造性进化的跃迁…

试玩C++ 操作页面控件

最近数字和金山吵的热火朝天的,群里有人说网友的投票可能有工具刷出来的,觉得应该很有意思,就想自己试一下,玩了半天终于可以操作页面进行投票了,但这个投票做了IP限制,所以工具也无用武之地啊!…

Visual Studio “类视图”和“对象浏览器”图标

类视图”和“对象浏览器”显示一些图标,每个图标表示不同类型的符号,如命名空间、类、函数或变量。下表对显示的图标进行说明,并对每个图标进行描述。 图标说明图标说明 命名空间 方法或函数 类 运算符 接口 属性 结构 字段或变量 联…