stack和queue的模拟实现

stack和queue的模拟实现

  • 容器适配器
    • 什么是适配器
    • STL标准库中stack和queue的底层结构
    • deque的简单介绍
    • deque的缺陷
  • stack模拟实现
  • queue模拟实现
  • priority_queue
    • priority_queue的使用
    • priority_queue的模拟实现

容器适配器

什么是适配器

适配器是一种设计模式(设计模式是一套被反复使用的、多数人知晓的、经过分类编目的、代码设计经验的总结),该种模式是将一个类的接口转换成客户希望的另外一个接口。
在这里插入图片描述

STL标准库中stack和queue的底层结构

虽然stack和queue中也可以存放元素,但在STL中并没有将其划分在容器的行列,而是将其称为容器适配器,这是因为stack和队列只是对其他容器的接口进行了包装,STL中stack和queue默认使用deque。
在这里插入图片描述
在这里插入图片描述

deque的简单介绍

deque(双端队列):是一种双开口的"连续"空间的数据结构,双开口的含义是:可以在头尾两端进行插入和删除操作,且时间复杂度为O(1),与vector比较,头插效率高,不需要搬移元素;与list比较,空间利用率比较高。
在这里插入图片描述
deque并不是真正连续的空间,而是由一段段连续的小空间拼接而成的,实际deque类似于一个动态的二维数组。

双端队列底层是一段假象的连续空间,实际是分段连续的,为了维护其“整体连续”以及随机访问的假象,落在了deque的迭代器身上,因此deque的迭代器设计就比较复杂:
在这里插入图片描述
在这里插入图片描述

deque的缺陷

与vector比较,deque的优势是:头部插入和删除时,不需要搬移元素,效率特别高,而且在扩容时,也不需要搬移大量的元素,因此其效率是必vector高的。

与list比较,其底层是连续空间,空间利用率比较高,不需要存储额外字段。

但是,deque有一个致命缺陷:不适合遍历,因为在遍历时,deque的迭代器要频繁的去检测其是否移动到某段小空间的边界,导致效率低下,而序列式场景中,可能需要经常遍历,因此在实际中,需要线性结构时,大多数情况下优先考虑vector和list,deque的应用并不多,而目前能看到的一个应用就是,STL用其作为stack和queue的底层数据结构

stack是一种后进先出的特殊线性数据结构,因此只要具有push_back()和pop_back()操作的线性结构,都可以作为stack的底层容器,比如vector和list都可以;queue是先进先出的特殊线性数据结构,只要具有push_back和pop_front操作的线性结构,都可以作为queue的底层容器,比如list。但是STL中对stack和queue默认选择deque作为其底层容器,主要是因为:

  1. stack和queue不需要遍历(因此stack和queue没有迭代器),只需要在固定的一端或者两端进行操作。
  2. 在stack中元素增长时,deque比vector的效率高(扩容时不需要搬移大量数据);queue中的元素增长时,deque不仅效率高,而且内存使用率高。

stack模拟实现

stack是一种后入先出的数据结构,有了容器适配器以后,就可以很容易去实现它了:
在这里插入图片描述

函数说明接口说明
empty()检测stack是否为空
size()返回stack中元素的个数
top()返回栈顶元素的引用
push()将元素val压入stack中
pop()将stack中尾部的元素弹出
swap()交换两个栈中的数据
#pragma once
#include<deque>namespace gtt
{template<class T, class Container = deque<T>>class stack{public://插入void push(const T& x){_con.push_back(x);}//删除void pop(){_con.pop_back();}//取栈顶元素T& top(){return _con.back();}const T& top() const{return _con.back();}//判空bool empty() const{return _con.empty();}//求有效元素个数size_t size() const{return _con.size();}//交换两个栈的数据void swap(stack<T, Container>& st){_con.swap(st._con);}private:Container _con;};
}

queue模拟实现

队列是队尾入,队头出的数据结构:
在这里插入图片描述

函数说明接口说明
empty()检测队列是否为空,是返回true,否则返回false
size()返回队列中有效元素的个数
front()返回队头元素的引用
back()返回队尾元素的引用
push()将元素val压入stack中
pop()将队头元素出队列
swap()交换两个队列中的数据
#pragma once
#include<deque>namespace gtt
{template<class T, class Container = deque<T>>class queue{public://插入void push(const T& x){_con.push_back(x);}//删除void pop(){_con.pop_front();}//取队头元素T& front(){return _con.front();}const T& front() const{return _con.front();}//取队尾元素T& back(){return _con.back();}const T& back()const{return _con.back();}//判空bool empty(){return _con.empty();}//有效元素个数size_t size() const{return _con.size();}//交换两个栈中的数据void swap(queue<T, Container>& q){_con.swap(q._con);}private:Container _con;};
}

priority_queue

priority_queue被称作为优先级队列,类似于我们数据结构阶段所学习的堆:

  1. 优先队列是一种容器适配器,根据严格的弱排序标准,它的第一个元素总是它所包含的元素中最大的。
  2. 此上下文类似于堆,在堆中可以随时插入元素,并且只能检索最大堆元素(优先队列中位于顶部的元素)。
  3. 优先队列被实现为容器适配器,容器适配器即将特定容器类封装作为其底层容器类,queue提供一组特定的成员函数来访问其元素。元素从特定容器的“尾部”弹出,其称为优先队列的顶部。
  4. 底层容器可以是任何标准容器类模板,也可以是其他特定设计的容器类。容器应该可以通过随机访问迭代器访问,并支持以下操作:
  • empty():检测容器是否为空
  • size():返回容器中有效元素个数
  • front():返回容器中第一个元素的引用
  • push_back():在容器尾部插入元素
  • pop_back():删除容器尾部元素
  1. 标准容器类vector和deque满足这些需求。默认情况下,如果没有为特定的priority_queue类实例化指容器类,则使用vector。
  2. 需要支持随机访问迭代器,以便始终在内部保持堆结构。容器适配器通过在需要时自动调用算法函数make_heap、push_heap和pop_heap来自动完成此操作。

priority_queue的使用

优先级队列默认使用vector作为其底层存储数据的容器,在vector上又使用了堆算法将vector中元素构造成堆的结构,因此priority_queue就是堆,所有需要用到堆的位置,都可以考虑使用priority_queue。注意:默认情况下priority_queue是大堆。

函数声明接口说明
priority_queue() priority_queue(first,last)构造一个优先级队列
empty( )检测优先级队列是否为空,是返回true,否则返回false
top( )返回优先级队列中最大(最小元素),即堆顶元素
push(x)在优先级队列中插入元素x
pop()删除优先级队列中最大(最小)元素,即堆顶元素

在这里插入图片描述

#include<iostream>
#include<vector>
#include<functional>
#include<queue>
using namespace std;class Date
{
public:Date(int year = 1900, int month = 1, int day = 1): _year(year), _month(month), _day(day){}bool operator<(const Date& d)const{return (_year < d._year) ||(_year == d._year && _month < d._month) ||(_year == d._year && _month == d._month && _day < d._day);}bool operator>(const Date& d)const{return (_year > d._year) ||(_year == d._year && _month > d._month) ||(_year == d._year && _month == d._month && _day > d._day);}friend ostream& operator<<(ostream& _cout, const Date& d){_cout << d._year << "-" << d._month << "-" << d._day;return _cout;}
private:int _year;int _month;int _day;
};void priority_queue_test()
{//默认情况下创建的是大堆vector<int> v{ 3,2,7,6,0,4,1,9,8,5 };priority_queue<int> q1;for (auto& e : v){q1.push(e);}while (!q1.empty()){cout << q1.top() << " ";//9 8 7 6 5 4 3 2 1 0q1.pop();}cout << endl;//创建小堆,需要第三个模板参数换出greater比较方式priority_queue<int, vector<int>, greater<int>> heap(v.begin(), v.end());while (!heap.empty()){cout << heap.top() << " ";//0 1 2 3 4 5 6 7 8 9heap.pop();}cout << endl;//如果需要自定义数据,则需要对运算进行重载// 大堆,需要用户在自定义类型中提供<的重载priority_queue<Date> q2;q2.push(Date(2018, 10, 29));q2.push(Date(2018, 10, 28));q2.push(Date(2018, 10, 30));cout << q2.top() << endl;// 如果要创建小堆,需要用户提供>的重载priority_queue<Date, vector<Date>, greater<Date>> q3;q3.push(Date(2018, 10, 29));q3.push(Date(2018, 10, 28));q3.push(Date(2018, 10, 30));cout << q2.top() << endl;
}int main()
{priority_queue_test();return 0;
}

priority_queue的模拟实现

在这儿我们需要了解仿函数的概念:

仿函数(Functor)又称为函数对象(Function Object)是一个能行使函数功能的类。仿函数的语法几乎和我们普通的函数调用一样,不过作为仿函数的类,都必须重载 operator() 运算符。因为调用仿函数,实际上就是通过类对象调用重载后的 operator() 运算符。

通过下面这段代码我们就可以很好的认识我们的仿函数:

namespace gtt
{template<class T>class less{public:bool operator()(const T& l, const T& r) const{return l < r;}};template<class T>class greater{public:bool operator()(const T& l, const T& r) const{return l > r;}};
}int main()
{gtt::less<int> lsFunc1;cout << lsFunc1(1, 2) << endl;gtt::greater<int> lsFunc2;cout << lsFunc2(1, 2) << endl;return 0;
}

我们可以将优先级队列就理解为一个堆结构,他的实现也就是一个建堆的过程,就像我们实现堆一样,需要用到向上,向下调整算法,下面就是priority_queue的模拟实现:

namespace gtt
{//Compare时进行比较的仿函数,less->大堆, greater->小堆template<class T, class Container = vector<T>, class Compare = std::less<T>>class priority_queue{public://构造函数priority_queue(){}template<class InputIterator>priority_queue(InputIterator first, InputIterator last){while (first != last){_con.push_back(*first);first++;}//建堆for (int i = (_con.size() - 1 - 1) / 2; i >= 0; i--){adjust_down(i);}}//向上调整算法void adjust_up(size_t child){Compare com;size_t parent = (child - 1) / 2;while (child > 0){//建大堆if (com(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);child = parent;parent = (child - 1) / 2;}else{break;}}}//堆的插入void push(const T& x){_con.push_back(x);adjust_up(_con.size() - 1);}//向下调整算法void adjust_down(size_t parent){Compare com;size_t child = parent * 2 + 1;while (child < _con.size()){if (child + 1 < _con.size() && com(_con[child], _con[child + 1])){child++;}if (com(_con[parent], _con[child])){std::swap(_con[parent], _con[child]);parent = child;child = parent * 2 + 1;}else{break;}}}//堆的删除void pop(){std::swap(_con[0], _con[_con.size() - 1]);_con.pop_back();adjust_down(0);}//取堆顶元素const T& top(){return _con[0];}//判断堆是否为空bool empty(){return _con.empty();}//堆有效元素个数size_t size(){return _con.size();}private:Container _con;};
}

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49506.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C++】红黑树

目录 一、红黑树的概念二、红黑树的性质三、红黑树的插入操作四、红黑树的验证五、红黑树和AVL树的比较六、代码 一、红黑树的概念 红黑树&#xff0c;是一种二叉搜索树&#xff0c;但在每个结点上增加一个存储位表示结点的颜色&#xff0c;可以是Red或Black。 通过对任何一条从…

设计模式(9)建造者模式

一、 1、概念&#xff1a;将一个复杂对象的构造与它的表示分离&#xff0c;使得同样的构造过程可以创建不同的表示。建造者模式主要用于创建一些复杂的对象&#xff0c;这些对象内部构建间的顺序通常是稳定的&#xff0c;但对象内部的构建通常面临着复杂的变化&#xff1b;建造…

[SpringBoot3]Web服务

五、Web服务 基于浏览器的B/S结构应用十分流行。SpringBoot非常适合Web应用开发&#xff0c;可以使用嵌入式Tomcat、Jetty、Undertow或Netty创建一个自包含的HTTP服务器。一个SpringBoot的Web应用能够自己独立运行&#xff0c;不依赖需要安装的Tomcat、Jetty等。SpringBoot可以…

indexDB入门到精通

前言 由于开发3D可视化项目经常用到模型&#xff0c;而一个模型通常是几m甚至是几十m的大小对于一般的服务器来讲加载速度真的十分的慢&#xff0c;为了解决这个加载速度的问题&#xff0c;我想到了几个本地存储的。 首先是cookie,cookie肯定是不行的&#xff0c;因为最多以只…

Vue的Ajax请求-axios、前后端分离练习

Vue的Ajax请求 axios简介 ​ Axios&#xff0c;是Web数据交互方式&#xff0c;是一个基于promise [5]的网络请求库&#xff0c;作用于node.js和浏览器中&#xff0c;它是 isomorphic 的(即同一套代码可以运行在浏览器和node.js中)。在服务端它使用原生node.js http模块, 而在…

SpringBoot +Vue3 简单的前后端交互

前端&#xff1a;Vue3 创建项目&#xff1a; npm create vuelatest > cd <your-project-name> > npm install > npm run dev 项目结构图如下&#xff1a; 1、查看入口文件内容&#xff1a;main.js 代码如下&#xff1a; import ./assets/main.css impor…

自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-@RequestParam

&#x1f600;前言 自己实现 SpringMVC 底层机制 系列之-实现任务阶段 6-完成控制器方法获取参数-RequestParam &#x1f3e0;个人主页&#xff1a;尘觉主页 &#x1f9d1;个人简介&#xff1a;大家好&#xff0c;我是尘觉&#xff0c;希望我的文章可以帮助到大家&#xff0c…

攻防世界-Web_php_include

原题 解题思路 php://被替换了&#xff0c;但是只做了一次比对&#xff0c;改大小写就可以绕过。 用burp抓包&#xff0c;看看有哪些文件 flag明显在第一个PHP文件里&#xff0c;直接看

飞天使-k8s基础组件分析-pod

文章目录 pod介绍pod 生命周期init 容器容器handlerpod中容器共享进程空间sidecar 容器共享 参考链接 pod介绍 最小的容器单元 为啥需要pod? 答: 多个进程丢一个容器里&#xff0c;会因为容器里个别进程出问题而出现蝴蝶效应&#xff0c;pod 是更高级的处理方式pod 如何共享相…

【李群李代数】李群控制器(lie-group-controllers)介绍——控制 SO(3) 空间中的系统的比例控制器Demo...

李群控制器SO(3)测试 测试代码是一个用于控制 SO(3) 空间中的系统的比例控制器。它通过计算控制策略来使当前状态逼近期望状态。该控制器使用比例增益 kp 进行参数化&#xff0c;然后进行一系列迭代以更新系统状态&#xff0c;最终检查状态误差是否小于给定的阈值。这个控制器用…

摩托车外廓尺寸检测软件

本系统为摩托车外廓尺寸检测软件&#xff0c;该系统共涉及两种测量方法&#xff1a;自动测量和手动测量&#xff0c;旨在测量出每一台摩托车的外廓尺寸&#xff0c;包括但不限于摩托车的车长、车宽、车高、轮距、前悬、后悬、前伸距等需要测量的参数&#xff0c;可通过运行软件…

二、Kafka快速入门

目录 2.1 安装部署1、【单机部署】2、【集群部署】 2.2 Kafka命令行操作1、查看topic相关命令参数2、查看当前kafka服务器中的所有Topic3、创建 first topic4、查看 first 主题的详情5、修改分区数&#xff08;注意&#xff1a;分区数只能增加&#xff0c;不能减少&#xff09;…

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测(多指标,多图)

回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09; 目录 回归预测 | MATLAB实现WOA-SVM鲸鱼算法优化支持向量机多输入单输出回归预测&#xff08;多指标&#xff0c;多图&#xff09;效果一览基本介绍程…

【C++】早绑定、析构与多态 | 一道关于多态的选择题记录

今天在和群友聊天的时候看到了一道很坑的题目&#xff0c;分享给大家 1.看题&#xff01; 先来看看题目 struct Dad { public:Dad(){ echo();}~Dad(){ echo();}virtual void echo() {cout << "DAD ";} };struct Son:Dad { public:void echo() const override…

Java后端开发面试题——微服务篇总结

Spring Cloud 5大组件有哪些&#xff1f; 随着SpringCloudAlibba在国内兴起 , 我们项目中使用了一些阿里巴巴的组件 注册中心/配置中心 Nacos 负载均衡 Ribbon 服务调用 Feign 服务保护 sentinel 服务网关 Gateway Ribbon负载均衡策略有哪些 ? RoundRobinRule&…

vue 项目在编译时,总是出现系统崩的状态,报错信息中有v7 或者 v8 的样式-项目太大内存溢出

vue 项目在编译时&#xff0c;总是出现系统崩的状态&#xff0c;node 命令框也会报错&#xff0c;如下图&#xff1a;有v7 或者 v8 的样式。 原因分析&#xff1a; 分析&#xff1a;遇到与上面图片相似的问题&#xff0c;我们要首先要想到是否是 有关内存的问题&#xff0c;当然…

传输层协议——TCP(下)

文章目录 1. listen的第二个参数2. 滑动窗口3. 流量控制4. 拥塞控制5. 延迟应答6. 捎带应答7. 面向字节流7.1 粘包问题 8. TCP异常情况10. TCP小结 1. listen的第二个参数 listen的第二个参数&#xff0c;叫做底层的全连接队列的长度&#xff0c;算法是&#xff1a;n1&#xf…

Elasticsearch(十四)搜索---搜索匹配功能⑤--全文搜索

一、前言 不同于之前的term。terms等结构化查询&#xff0c;全文搜索首先对查询词进行分析&#xff0c;然后根据查询词的分词结果构建查询。这里所说的全文指的是文本类型数据&#xff08;text类型&#xff09;,默认的数据形式是人类的自然语言&#xff0c;如对话内容、图书名…

(6)(6.2) 任务命令

文章目录 前言 6.2.1 概述 6.2.2 导航命令 6.2.3 条件命令 6.2.4 DO命令 前言 本文介绍了 Copter、Plane 和 Rover 切换到自动模式时支持的任务指令。 &#xff01;Warning 这是一项正在进行中的工作&#xff0c;尚未经过全面审核。有关 Copter 的更佳列表&#xff0c;请…

MySQL视图

一、视图-介绍及基本语法 视图&#xff08;View&#xff09;是一种虚拟存在的表。视图中的数据并不在数据库中实际存在&#xff0c;行和列数据来自定义视图的查询中使用的表&#xff0c;并且是在使用视图时动态生成的。 通俗的讲&#xff0c;视图只保存了查询的SQL逻辑&#xf…