2023年国赛 高教社杯数学建模思路 - 案例:退火算法

文章目录

    • 1 退火算法原理
      • 1.1 物理背景
        • 1.2 背后的数学模型
    • 2 退火算法实现
      • 2.1 算法流程
      • 2.2算法实现
  • 建模资料

## 0 赛题思路

(赛题出来以后第一时间在CSDN分享)

https://blog.csdn.net/dc_sinor?type=blog

1 退火算法原理

1.1 物理背景

在热力学上,退火(annealing)现象指物体逐渐降温的物理现象,温度愈低,物体的能量状态会低;够低后,液体开始冷凝与结晶,在结晶状态时,系统的能量状态最低。大自然在缓慢降温(亦即,退火)时,可“找到”最低能量状态:结晶。但是,如果过程过急过快,快速降温(亦称「淬炼」,quenching)时,会导致不是最低能态的非晶形。

如下图所示,首先(左图)物体处于非晶体状态。我们将固体加温至充分高(中图),再让其徐徐冷却,也就退火(右图)。加温时,固体内部粒子随温升变为无序状,内能增大,而徐徐冷却时粒子渐趋有序,在每个温度都达到平衡态,最后在常温时达到基态,内能减为最小(此时物体以晶体形态呈现)。

在这里插入图片描述

1.2 背后的数学模型

如果你对退火的物理意义还是晕晕的,没关系我们还有更为简单的理解方式。想象一下如果我们现在有下面这样一个函数,现在想求函数的(全局)最优解。如果采用Greedy策略,那么从A点开始试探,如果函数值继续减少,那么试探过程就会继续。而当到达点B时,显然我们的探求过程就结束了(因为无论朝哪个方向努力,结果只会越来越大)。最终我们只能找打一个局部最后解B。

在这里插入图片描述

根据Metropolis准则,粒子在温度T时趋于平衡的概率为exp(-ΔE/(kT)),其中E为温度T时的内能,ΔE为其改变数,k为Boltzmann常数。Metropolis准则常表示为
在这里插入图片描述

Metropolis准则表明,在温度为T时,出现能量差为dE的降温的概率为P(dE),表示为:P(dE) = exp( dE/(kT) )。其中k是一个常数,exp表示自然指数,且dE<0。所以P和T正相关。这条公式就表示:温度越高,出现一次能量差为dE的降温的概率就越大;温度越低,则出现降温的概率就越小。又由于dE总是小于0(因为退火的过程是温度逐渐下降的过程),因此dE/kT < 0 ,所以P(dE)的函数取值范围是(0,1) 。随着温度T的降低,P(dE)会逐渐降低。

我们将一次向较差解的移动看做一次温度跳变过程,我们以概率P(dE)来接受这样的移动。也就是说,在用固体退火模拟组合优化问题,将内能E模拟为目标函数值 f,温度T演化成控制参数 t,即得到解组合优化问题的模拟退火演算法:由初始解 i 和控制参数初值 t 开始,对当前解重复“产生新解→计算目标函数差→接受或丢弃”的迭代,并逐步衰减 t 值,算法终止时的当前解即为所得近似最优解,这是基于蒙特卡罗迭代求解法的一种启发式随机搜索过程。退火过程由冷却进度表(Cooling Schedule)控制,包括控制参数的初值 t 及其衰减因子Δt 、每个 t 值时的迭代次数L和停止条件S。

2 退火算法实现

2.1 算法流程

(1) 初始化:初始温度T(充分大),初始解状态S(是算法迭代的起点), 每个T值的迭代次数L
(2) 对k=1,……,L做第(3)至第6步:
(3) 产生新解S′
(4) 计算增量Δt′=C(S′)-C(S),其中C(S)为评价函数
(5) 若Δt′<0则接受S′作为新的当前解,否则以概率exp(-Δt′/T)接受S′作为新的当前解.
(6) 如果满足终止条件则输出当前解作为最优解,结束程序。
终止条件通常取为连续若干个新解都没有被接受时终止算法。
(7) T逐渐减少,且T->0,然后转第2
在这里插入图片描述

2.2算法实现

import numpy as np
import matplotlib.pyplot as plt
import randomclass SA(object):def __init__(self, interval, tab='min', T_max=10000, T_min=1, iterMax=1000, rate=0.95):self.interval = interval                                    # 给定状态空间 - 即待求解空间self.T_max = T_max                                          # 初始退火温度 - 温度上限self.T_min = T_min                                          # 截止退火温度 - 温度下限self.iterMax = iterMax                                      # 定温内部迭代次数self.rate = rate                                            # 退火降温速度#############################################################self.x_seed = random.uniform(interval[0], interval[1])      # 解空间内的种子self.tab = tab.strip()                                      # 求解最大值还是最小值的标签: 'min' - 最小值;'max' - 最大值#############################################################self.solve()                                                # 完成主体的求解过程self.display()                                              # 数据可视化展示def solve(self):temp = 'deal_' + self.tab                                   # 采用反射方法提取对应的函数if hasattr(self, temp):deal = getattr(self, temp)else:exit('>>>tab标签传参有误:"min"|"max"<<<')x1 = self.x_seedT = self.T_maxwhile T >= self.T_min:for i in range(self.iterMax):f1 = self.func(x1)delta_x = random.random() * 2 - 1if x1 + delta_x >= self.interval[0] and x1 + delta_x <= self.interval[1]:   # 将随机解束缚在给定状态空间内x2 = x1 + delta_xelse:x2 = x1 - delta_xf2 = self.func(x2)delta_f = f2 - f1x1 = deal(x1, x2, delta_f, T)T *= self.rateself.x_solu = x1                                            # 提取最终退火解def func(self, x):                                              # 状态产生函数 - 即待求解函数value = np.sin(x**2) * (x**2 - 5*x)return valuedef p_min(self, delta, T):                                      # 计算最小值时,容忍解的状态迁移概率probability = np.exp(-delta/T)return probabilitydef p_max(self, delta, T):probability = np.exp(delta/T)                               # 计算最大值时,容忍解的状态迁移概率return probabilitydef deal_min(self, x1, x2, delta, T):if delta < 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_min(delta, T)if P > random.random(): return x2else: return x1def deal_max(self, x1, x2, delta, T):if delta > 0:                                               # 更优解return x2else:                                                       # 容忍解P = self.p_max(delta, T)if P > random.random(): return x2else: return x1def display(self):print('seed: {}\nsolution: {}'.format(self.x_seed, self.x_solu))plt.figure(figsize=(6, 4))x = np.linspace(self.interval[0], self.interval[1], 300)y = self.func(x)plt.plot(x, y, 'g-', label='function')plt.plot(self.x_seed, self.func(self.x_seed), 'bo', label='seed')plt.plot(self.x_solu, self.func(self.x_solu), 'r*', label='solution')plt.title('solution = {}'.format(self.x_solu))plt.xlabel('x')plt.ylabel('y')plt.legend()plt.savefig('SA.png', dpi=500)plt.show()plt.close()if __name__ == '__main__':SA([-5, 5], 'max')

实现结果

在这里插入图片描述

建模资料

资料分享: 最强建模资料
在这里插入图片描述
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49454.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

组合总和-LeetCode

给你一个无重复元素的整数数组 candidates 和一个目标整数 target &#xff0c;找出 candidates 中可以使数字和为目标数 target 的所有不同组合 &#xff0c;并以列表形式返回。你可以按 任意顺序返回这些组合。 candidates 中的同一个数字可以无限制重复被选取 。如果至少一个…

【Python】PyCharm配置外部工具

【摘要】 QT Designer配置 Designer绘制的UI文件转换成py文件 UI用到的图片资源文件转换成py文件 注意&#xff1a;使用豆瓣原安装比较快 pip install * -i http://pypi.douban.com/simple --trusted-host pypi.douban.com 1&#xff0c;File->Settings->Tools->…

手机无人直播软件,有哪些优势?

近年来&#xff0c;随着手机直播的流行和直播带货的市场越来越大&#xff0c;手机无人直播软件成为许多商家开播带货的首选。在这个领域里&#xff0c;声音人无人直播系统以其独特的优势&#xff0c;成为市场上备受瞩目的产品。接下来&#xff0c;我们将探讨手机无人直播软件给…

Office ---- excel ---- 怎么批量设置行高

解决方法&#xff1a; 调整行高即可

C语言学习系列-->【关于qsort函数的详解以及它的模拟实现】

文章目录 一、概述二、qsort函数参数介绍三、qsort实现排序3.1 qsort实现整型数组排序3.2 qsort实现结构体数组排序 四、模拟实现qsort函数 一、概述 对数组的元素进行排序 对数组中由 指向的元素进行排序&#xff0c;每个元素字节长&#xff0c;使用该函数确定顺序。 此函数使…

mongodb集群

端口192.168.115.3 192.168.115.4 1192.168.115.5 下载MongoDB软件包版本为4.2.14并安装 rpm -ih --force --nodeps *.rpm 2创建文件夹mkdir -p /opt/local/mongo-cluster/conf 3.在目录里创建配置文件cd /opt/local/mongo-cluster/conf …

vue项目中使用ts的枚举类型

vue项目中要使用ts的枚举类型需要为script标签的lang属性添加ts属性值 <script lang"ts" setup> </script > 声明枚举类型&#xff1a; //语法 /* enum 枚举名称 {可能的值 }*/ enum scenic_status {"正常" 1,"审核中","暂停…

如何撰写骨灰级博士论文?这是史上最全博士论文指导!

博士论文的写作是博士研究生主要要完成的工作。由于存在着较高的难度&#xff0c;较长的写作周期&#xff0c;以及在创新&#xff0c;写作规范&#xff0c;实际及理论意义等方面有着比较高的要求&#xff0c;博士论文的完成一般说来是有相当难度的。一篇好的博士论文不仅是一本…

2023年中,量子计算产业现状——

2023年上半年&#xff0c;量子计算&#xff08;QC&#xff09;领域取得了一系列重要进展和突破&#xff0c;显示出量子计算技术的快速发展和商业应用的不断拓展。在iCV TAnk近期发表的一篇报告中&#xff0c;团队从制度进步、产业生态、投融资形势、总结与展望四个方面对量子计…

Vue3 中引入液晶数字字体(通常用于大屏设计)

一、下载 .ttf 字体文件到本地&#xff0c;放在 src 中的 assets 文件下 下载液晶字体 DS-Digital.ttf 二、在 css 文件中引入字体 /* src/assets/fonts/dsfont.css */ font-face {font-family: electronicFont;src: url(./DS-Digital.ttf);font-weight: normal;font-styl…

Mybatis 建立依赖失败:报错Dependency ‘mysql:mysql-connector-java:8.0.28‘ not found

Mybatis 建立依赖失败&#xff1a;报错Dependency ‘mysql:mysql-connector-java:8.0.28’ not found 解决办法&#xff1a; 写完依赖代码&#xff0c;直接重构&#xff0c;下载依赖。 图片: ![Alt](https://img-home.csdnimg.cn/images/20220524100510.png Mac 版本注意Ide…

编写Dockerfile制作Web应用系统nginx镜像,生成镜像nginx:v1.1,并推送其到私有仓库

Docker 镜像是一个特殊的文件系统&#xff0c;除了提供容器运行时所需的程序、库、资源、配置等文件外&#xff0c;还包含了一些为运行时准备的一些配置参数&#xff08;如匿名卷、环境变量、用户等&#xff09;。镜像不包含任何动态数据&#xff0c;其内容在构建之后也不会被改…

深度学习论文: WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation

深度学习论文: WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation WinCLIP: Zero-/Few-Shot Anomaly Classification and Segmentation PDF: https://arxiv.org/pdf/2303.14814.pdf PyTorch代码: https://github.com/shanglianlm0525/CvPytorch PyTorch代码: h…

Spring事务和事务传播机制(2)

前言&#x1f36d; ❤️❤️❤️SSM专栏更新中&#xff0c;各位大佬觉得写得不错&#xff0c;支持一下&#xff0c;感谢了&#xff01;❤️❤️❤️ Spring Spring MVC MyBatis_冷兮雪的博客-CSDN博客 在Spring框架中&#xff0c;事务管理是一种用于维护数据库操作的一致性和…

设计模式——接口隔离原则

文章目录 基本介绍应用实例应传统方法的问题和使用接口隔离原则改进 基本介绍 客户端不应该依赖它不需要的接口&#xff0c;即一个类对另一个类的依赖应该建立在最小的接口上先看一张图: 类 A 通过接口 Interface1 依赖类 B&#xff0c;类 C 通过接口 Interface1 依赖类 D&…

shell脚本语句(画矩形、三角形、乘法表和小游戏)(#^.^#)

目录 一、语句 一、条件语句 一、以用户为例演示 一、显示当前登录系统的用户信息 二、显示有多少个用户 二、单分支if 一、输入脚本 二、验证结果 三、双分支if 一、输入脚本 二、验证结果 四、多分支if 一、输入脚本 二、验证 二、循环语句 一、shell版本的循环…

空调企业只干空调,卡萨帝却干了业主想不到的事

作者 | 曾响铃 文 | 响铃说 今年入夏以来&#xff0c;随着气温的不断攀升&#xff0c;空调已经成为生活、工作中的“绝对刚需”。由此而来的则是空调产品的销量大增。 但也有不少消费者表示&#xff0c;随着产品功能的越发相似&#xff0c;价格趋同&#xff0c;使空调变得越…

Postman 如何进行参数化

前言 Postman作为一款接口测试工具&#xff0c;受到了非常多的开发工程师的拥护。 那么做为测试&#xff0c;了解Postman这款工具就成了必要的了。 这篇文章就是为了解决Postman怎么进行参数化的。 全局变量 全局变量是将这个变量设置成整个程序的都可以用&#xff0c;不用去…

装箱和拆箱

1. 概念 装箱 将值类型转换成等价的引用类型 装箱的步骤 拆箱 将一个已装箱的引用类型转换为值类型&#xff0c;拆箱操作需要声明拆箱后转换的类型 拆箱的步骤 1&#xff09;获取已装箱的对象的地址 2&#xff09;将值从堆上的对象中复制到堆栈上的值变量中 2. 总结 装箱和拆箱…

C语言:指针(超深度讲解)

目录 指针&#xff1a; 学习目标&#xff1a; 指针可以理解为&#xff1a; 字符指针&#xff1a; 定义&#xff1a;字符指针 char*。 字符指针的使用&#xff1a; 练习&#xff1a; 指针数组&#xff1a; 概念&#xff1a;指针数组是一个存放指针的数组。 实现模拟二维…