STM32——RTC实时时钟

文章目录

  • Unix时间戳
    • UTC/GMT
  • 时间戳转换
  • BKP简介
  • BKP基本结构
  • 读写BKP备份寄存器
    • 电路设计
    • 关键代码
  • RTC简介
  • RTC框图
  • RTC基本结构
  • 硬件电路
  • RTC操作注意事项
  • 读写实时时钟
    • 电路设计
    • 关键代码

Unix时间戳

  • Unix 时间戳(Unix Timestamp)定义为从UTC/GMT的1970年1月1日0时0分0秒开始所经过的秒数,不考虑闰秒
  • 时间戳存储在一个秒计数器中,秒计数器为32位/64位的整型变量
  • 世界上所有时区的秒计数器相同,不同时区通过添加偏移来得到当地时间
  • 底层使用秒计数器可以节省硬件设计电路,计算时间间隔,存储方便

在这里插入图片描述

UTC/GMT

  • GMT(Greenwich Mean Time)格林尼治标准时间是一种以地球自转为基础的时间计量系统。它将地球自转一周的时间间隔等分为24小时,以此确定计时标准

  • UTC(Universal Time Coordinated)协调世界时是一种以原子钟为基础的时间计量系统。它规定铯133原子基态的两个超精细能级间在零磁场下跃迁辐射9,192,631,770周所持续的时间为1秒。当原子钟计时一天的时间与地球自转一周的时间相差超过0.9秒时,UTC会执行闰秒来保证其计时与地球自转的协调一致

时间戳转换

C语言的time.h模块提供了时间获取和时间戳转换的相关函数,可以方便地进行秒计数器、日期时间和字符串之间的转换

在这里插入图片描述

  • time_t 是int64数据类型
  • struct tm 这是一个用来保存时间和日期的结构。
struct tm {int tm_sec;         /* 秒,范围从 0 到 59        */int tm_min;         /* 分,范围从 0 到 59        */int tm_hour;        /* 小时,范围从 0 到 23        */int tm_mday;        /* 一月中的第几天,范围从 1 到 31    */int tm_mon;         /* 月,范围从 0 到 11        */int tm_year;        /* 自 1900 年起的年数        */int tm_wday;        /* 一周中的第几天,范围从 0 到 6    */int tm_yday;        /* 一年中的第几天,范围从 0 到 365    */int tm_isdst;       /* 夏令时                */
};

在这里插入图片描述

在线工具:在线时间戳转换工具

菜鸟教程:C 标准库 - <time.h>

localtime和mktime的实例:
在这里插入图片描述

注意:mktime的参数不加const,因为该参数既是输入参数也是输出参数,因为计算出星期后会填写回去

strftime函数:按照格式输出

在这里插入图片描述

BKP简介

  • BKP(Backup Registers)备份寄存器【需要VBAT引脚供电才能维持,掉电会清零,即使主电源掉电、系统复位也不会清零】【本质是RAM存储器,掉电丢失】
  • BKP可用于存储用户应用程序数据。当VDD(2.0~3.6V)电源被切断,他们仍然由VBAT(1.8~3.6V)维持供电。当系统在待机模式下被唤醒,或系统复位或电源复位时,他们也不会被复位【VBAT和VDD共地即可】
  • TAMPER引脚产生的侵入事件【电平检测】将所有备份寄存器BKP内容清除,会申请中断【VDD断电也会工作】
  • RTC引脚输出RTC校准时钟、RTC闹钟脉冲或者秒脉冲【引脚2同一个时间内只能使用一个功能】
  • 存储RTC时钟校准寄存器
  • 用户数据存储容量:
    • 20字节(中容量和小容量)/ 84字节(大容量和互联型)

在这里插入图片描述

BKP基本结构

在这里插入图片描述
当VDD有电时就使用VDD供电,没有时则使用功能VBAT供电

读写BKP备份寄存器

电路设计

在这里插入图片描述

关键代码

Key.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"void Key_Init(void)
{RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOB, ENABLE);GPIO_InitTypeDef GPIO_InitStructure;GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IPU;GPIO_InitStructure.GPIO_Pin = GPIO_Pin_1 | GPIO_Pin_11;GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;GPIO_Init(GPIOB, &GPIO_InitStructure);
}uint8_t Key_GetNum(void)
{uint8_t KeyNum = 0;if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0){Delay_ms(20);while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_1) == 0);Delay_ms(20);KeyNum = 1;}if (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0){Delay_ms(20);while (GPIO_ReadInputDataBit(GPIOB, GPIO_Pin_11) == 0);Delay_ms(20);KeyNum = 2;}return KeyNum;
}

Key.h

#ifndef __KEY_H
#define __KEY_Hvoid Key_Init(void);
uint8_t Key_GetNum(void);#endif

main.c

按下按键,写入备份寄存器,然后再读出来

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "Key.h"uint8_t KeyNum;uint16_t ArrayWrite[] = {0x1234, 0x5678};
uint16_t ArrayRead[2];int main(void)
{OLED_Init();Key_Init();OLED_ShowString(1, 1, "W:");OLED_ShowString(2, 1, "R:");//开启PWR和BKP时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);//在pwrd的库函数中,备份寄存器访问使能,设置PWR_CR的DBP,使能对BKP和RTC的访问PWR_BackupAccessCmd(ENABLE);while (1){KeyNum = Key_GetNum();if (KeyNum == 1){ArrayWrite[0] ++;ArrayWrite[1] ++;BKP_WriteBackupRegister(BKP_DR1, ArrayWrite[0]);//写备份寄存器BKP_WriteBackupRegister(BKP_DR2, ArrayWrite[1]);OLED_ShowHexNum(1, 3, ArrayWrite[0], 4);OLED_ShowHexNum(1, 8, ArrayWrite[1], 4);}ArrayRead[0] = BKP_ReadBackupRegister(BKP_DR1);//读备份寄存器ArrayRead[1] = BKP_ReadBackupRegister(BKP_DR2);OLED_ShowHexNum(2, 3, ArrayRead[0], 4);OLED_ShowHexNum(2, 8, ArrayRead[1], 4);}
}

RTC简介

  • RTC(Real Time Clock)实时时钟
  • RTC是一个独立的定时器,可为系统提供时钟和日历的功能
  • RTC和时钟配置系统处于后备区域,系统复位时数据不清零,VDD(2.0~3.6V)断电后可借助VBAT(1.8~3.6V)供电继续走时【和BKP一样,属于后备区域】
  • 32位的可编程计数器,可对应Unix时间戳的秒计数器【简化电路设计】
  • 20位的可编程预分频器,可适配不同频率的输入时钟【变成1Hz频率】
  • 可选择三种RTC时钟源(PTCCLK):
    • HSE时钟除以128(通常为8MHz/128)
    • LSE振荡器时钟(通常为32.768KHz)【经过15位分频器自然溢出得到1hz频率】
    • LSI振荡器时钟(40KHz)

RTC 复位和主电源掉电后,数据不丢失是BKP来实现的

注意:整个stm32有四个时钟源

  • HSE =高速外部时钟信号
  • HSI = 高速内部时钟信号
  • LSl=低速内部时钟信号【低速时钟供RTC和看门狗】
  • LSE =低速外部时钟信号【低速时钟供RTC和看门狗】

RTC框图

在这里插入图片描述

  • 灰色区域属于后备区域,待机时会供电
  • RTC_ALR是闹钟,当值与RTC_CNT相同时会产生信号,让stm退出待机
  • 中断信号有三种:秒中断、计数器溢出中断(2106年中断)、闹钟中断
  • 闹钟信号和wkup引脚都可以唤醒设备(10引脚)
    在这里插入图片描述
  • stm32芯片框图,常用32.768KHz,其他两路都是备用方案,主要工作是给系统主时钟和看门狗使用。且中间分频器是可以通过VBAT供电,而另外两路在掉电后时钟会暂停

RTC基本结构

在这里插入图片描述

  • 余数寄存器是一个自减计数器,存储当前计数值
  • 重装寄存器是计数目标,决定分频值

硬件电路

在这里插入图片描述

stm内部供电方案中设计了供电开关,有VDD用VDD,没有则用VBAT
在这里插入图片描述
stm32自带RTC晶振电路,如图所示是32.768KHz和8MHz的晶振
在这里插入图片描述

RTC操作注意事项

  • 执行以下操作将使能对BKP和RTC的访问:【初始化要完成如下操作】
    • 设置RCC_APB1ENR的PWREN和BKPEN,使能PWR和BKP时钟
    • 设置PWR_CR的DBP,使能对BKP和RTC的访问
  • 若在读取RTC寄存器时,RTC的APB1接口曾经处于禁止状态,则软件首先必须等待RTC_CRL寄存器中的RSF位(寄存器同步标志)被硬件置1【等待同步】
    • PCLK1和RTCCLK两个时钟频率不一致,PCLK1在掉电后会停止,如果使用APB1总线开启就去读RTC的值会读到0,需要等待RTC_CNT内有值
  • 必须设置RTC_CRL寄存器中的CNF位,使RTC进入配置模式后,才能写入RTC_PRL、RTC_CNT、RTC_ALR寄存器
  • 对RTC任何寄存器的写操作,都必须在前一次写操作结束后进行。可以通过查询RTC_CR寄存器中的RTOFF状态位,判断RTC寄存器是否处于更新中。仅当RTOFF状态位是1时,才可以写入RTC寄存器【等待上一步完成】

上述注意事项涉及到如下的框图:
在这里插入图片描述

PCLK1和RTCCLK两个时钟频率不一致,这会导致读取和写入操作不能立刻在寄存器中,需要通过RTC_CRL寄存器的RSF和CNF位去判断在RTCCLK频率下内部电路是否完成了数据的变动。

读写实时时钟

电路设计

在这里插入图片描述

关键代码

MyRTC.c

库函数在rcc和rtc里面

#include "stm32f10x.h"                  // Device header
#include <time.h>//编译器内置的库函数uint16_t MyRTC_Time[] = {2023, 1, 1, 23, 59, 55};void MyRTC_SetTime(void);void MyRTC_Init(void)
{//开启PWR和BKP时钟RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);//在pwrd的库函数中,备份寄存器访问使能,设置PWR_CR的DBP,使能对BKP和RTC的访问PWR_BackupAccessCmd(ENABLE);//复位的时候RTC计数器会清零,通过BKP的寄存器可以判断是否使用备用电源,如果使用则RTC始终不用重新初始化if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5){RCC_LSEConfig(RCC_LSE_ON);//开启LSE//LSE开启之后不是立马就工作,需要判断一下标志位while (RCC_GetFlagStatus(RCC_FLAG_LSERDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSE);//选择RTCCLK时钟为LSERCC_RTCCLKCmd(ENABLE);//使能//可加可不加下面2行RTC_WaitForSynchro();//等待同步RTC_WaitForLastTask();//等待上一次操作完成RTC_SetPrescaler(32768 - 1);//设置预分频的值、该函数内部会调用RTC_EnterConfigMode()和退出配置的代码,设置RTC_CRL寄存器中的CNF位,此时RTC寄存器都可以被使用RTC_WaitForLastTask();//等待上一次操作完成MyRTC_SetTime();BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);}else{RTC_WaitForSynchro();//等待同步RTC_WaitForLastTask();//等待上一次操作完成}
}//如果LSE无法起振导致程序卡死在初始化函数中
//可将初始化函数替换为下述代码,使用LSI当作RTCCLK
//LSI无法由备用电源供电,故主电源掉电时,RTC走时会暂停
/* 
void MyRTC_Init(void)
{RCC_APB1PeriphClockCmd(RCC_APB1Periph_PWR, ENABLE);RCC_APB1PeriphClockCmd(RCC_APB1Periph_BKP, ENABLE);PWR_BackupAccessCmd(ENABLE);if (BKP_ReadBackupRegister(BKP_DR1) != 0xA5A5){RCC_LSICmd(ENABLE);while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);//LSI是40khz,预分频系数为40000-1RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);RCC_RTCCLKCmd(ENABLE);RTC_WaitForSynchro();RTC_WaitForLastTask();RTC_SetPrescaler(40000 - 1);RTC_WaitForLastTask();MyRTC_SetTime();BKP_WriteBackupRegister(BKP_DR1, 0xA5A5);}else{RCC_LSICmd(ENABLE);while (RCC_GetFlagStatus(RCC_FLAG_LSIRDY) != SET);RCC_RTCCLKConfig(RCC_RTCCLKSource_LSI);RCC_RTCCLKCmd(ENABLE);RTC_WaitForSynchro();RTC_WaitForLastTask();}
}*/void MyRTC_SetTime(void)
{time_t time_cnt;struct tm time_date;time_date.tm_year = MyRTC_Time[0] - 1900;time_date.tm_mon = MyRTC_Time[1] - 1;time_date.tm_mday = MyRTC_Time[2];time_date.tm_hour = MyRTC_Time[3];time_date.tm_min = MyRTC_Time[4];time_date.tm_sec = MyRTC_Time[5];//mktime始终是0时区time_cnt = mktime(&time_date) - 8 * 60 * 60;RTC_SetCounter(time_cnt);//写入CNT计数器RTC_WaitForLastTask();//等待上一次操作完成
}void MyRTC_ReadTime(void)
{time_t time_cnt;struct tm time_date;time_cnt = RTC_GetCounter() + 8 * 60 * 60;//RTC_GetCounter读取秒计数器//因为是东八区,多了8*60*60秒time_date = *localtime(&time_cnt);//stm32内置的库函数弃用gmtime函数,只用localtime,同时该函数不能确定时区,始终是0时区MyRTC_Time[0] = time_date.tm_year + 1900;MyRTC_Time[1] = time_date.tm_mon + 1;MyRTC_Time[2] = time_date.tm_mday;MyRTC_Time[3] = time_date.tm_hour;MyRTC_Time[4] = time_date.tm_min;MyRTC_Time[5] = time_date.tm_sec;
}

MyRTC.h

#ifndef __MYRTC_H
#define __MYRTC_Hextern uint16_t MyRTC_Time[];void MyRTC_Init(void);
void MyRTC_SetTime(void);
void MyRTC_ReadTime(void);#endif

main.c

#include "stm32f10x.h"                  // Device header
#include "Delay.h"
#include "OLED.h"
#include "MyRTC.h"int main(void)
{OLED_Init();MyRTC_Init();OLED_ShowString(1, 1, "Date:XXXX-XX-XX");OLED_ShowString(2, 1, "Time:XX:XX:XX");OLED_ShowString(3, 1, "CNT :");OLED_ShowString(4, 1, "DIV :");while (1){MyRTC_ReadTime();//显示日期OLED_ShowNum(1, 6, MyRTC_Time[0], 4);OLED_ShowNum(1, 11, MyRTC_Time[1], 2);OLED_ShowNum(1, 14, MyRTC_Time[2], 2);//显示时间OLED_ShowNum(2, 6, MyRTC_Time[3], 2);OLED_ShowNum(2, 9, MyRTC_Time[4], 2);OLED_ShowNum(2, 12, MyRTC_Time[5], 2);OLED_ShowNum(3, 6, RTC_GetCounter(), 10);OLED_ShowNum(4, 6, RTC_GetDivider(), 10);//RTC_GetDivider可以获取更加精细的时间}
}

参考视频:江科大自化协

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/49297.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

redis 6个节点(3主3从),始终一个节点不能启动

redis节点&#xff0c;始终有一个节点不能启动起来 1.修改了配置文件 protected-mode no&#xff0c;重启 修改了配置文件 protected-mode no&#xff0c;重启redis问题依然存在 2、查看/var/log/message的redis日志 Aug 21 07:40:33 redisMaster kernel: Out of memory: K…

数据结构(3)

线性表是多个具有相同特征的数据的有限序列。 前驱元素&#xff1a;A在B前面&#xff0c;称A为B的前驱元素。 后继元素&#xff1a;B在A后面&#xff0c;称B为A的后继元素。 线性表特征&#xff1a; 1.一个元素没有前驱元素&#xff0c;就是头结点&#xff1b; 2.最后一个…

湖北黄石三维扫描文物保护修复文物建模3d打印-CASAIM中科广电

三维激光扫描技术在博物馆领域的运用&#xff0c;主要在以下3个方面&#xff1a;文物保护、文物数字化、虚拟博物馆。随着时间的流逝和人类活动的影响&#xff0c;文物不可避免地会受到来自自然或者人为的侵蚀和破坏。由于CASAIM三维激光扫描技术具有不用接触被测量目标、扫描速…

胖小酱之身后事

1&#xff09;小孩杰克就是艾略奥特童年的投影&#xff0c;从小被黑恶势力欺负&#xff0c;同活着却已死去的妈妈-----活死人-----生活在一起&#xff0c;对死亡有种天然的亲近&#xff0c;极端厌恶只会呼吸、大小便的活死人&#xff0c;他认为自己必须埋葬掉他们。小孩杰克在剧…

HTML 和 CSS 来实现毛玻璃效果(Glassmorphism)

毛玻璃效果简介 它的主要特征就是半透明的背景&#xff0c;以及阴影和边框。 同时还要为背景加上模糊效果&#xff0c;使得背景之后的元素根据自身内容产生漂亮的“变形”效果&#xff0c;示例&#xff1a; 代码实现 首先&#xff0c;创建一个 HTML 文件&#xff0c;写入如下…

<c++开发>通信工具 -之-SOME/IP移植部署 第一篇文章

&#xff1c;c开发&#xff1e;通信工具 -之-SOME/IP移植ubuntu部署 第一篇文章 一 前言 SOME/IP (Scalable service-Oriented MiddlewarE over IP) 是一种通信协议&#xff0c;主要用于嵌入式系统和车载网络中的服务导向通信。SOME/IP是AUTOSAR&#xff08;AUTomotive Open …

TouchGFX之DMA2D

Chrom-ART (DMA2D)图形加速器能够传输来自存储器的部分图像数据&#xff0c;并将其放入或先混合后再放入帧缓存。 Chrom-ART可从内部或外部存储器读取数据。 同样&#xff0c;它可以写入内部或外部存储器。 在绘制图形时可使用此功能&#xff0c;以显著提高显示性能&#xff0c…

React基础入门之虚拟Dom

React官方文档&#xff1a;https://react.docschina.org/ 说明 重要提示&#xff1a;本系列文章基础篇总结自尚硅谷课程&#xff0c;且采用类式写法&#xff01;&#xff01;最新的函数式组件写法见高级篇。 本系列文档旨在帮助vue同学更快速的学习react&#xff0c;如果你很…

若依项目的运行详细步骤

目录 一、项目的解读与获取 二、项目的运行 后端步骤(ruoyi-admin) &#xff08;一&#xff09;导入若依的2个SQL文件 版本建议 &#xff08;二&#xff09;Redis的配置 &#xff08;三&#xff09;启动后端 前端步骤(ruoyi-ui) 版本建议 &#xff08;一&#xff09;…

open suse 15.5(任意版本) 使用阿里云的repo

一、shell suse 的包管理工具叫 zypper. zypper addrepo -f http://mirrors.aliyun.com/opensuse/distribution/leap/15.5/repo/oss/ openSUSE-15.5-Oss zypper addrepo -f http://mirrors.aliyun.com/opensuse/distribution/leap/15.5/repo/non-oss/ openSUSE-15.5-Non-Oss …

数据结构—树表的查找

7.3树表的查找 ​ 当表插入、删除操作频繁时&#xff0c;为维护表的有序表&#xff0c;需要移动表中很多记录。 ​ 改用动态查找表——几种特殊的树 ​ 表结构在查找过程中动态生成 ​ 对于给定值key ​ 若表中存在&#xff0c;则成功返回&#xff1b; ​ 否则&#xff0…

监控 FTP 服务器

文件传输协议 &#xff08;FTP&#xff09; 用于在 TCP/IP 网络中的服务器和客户端之间传输文件&#xff0c;它是一种标准协议&#xff0c;广泛用于在各个垂直行业的组织之间从集中位置存储和分发数据。FTP协议的其他一些安全版本如下&#xff1a; SSH 文件传输协议 &#xff…

《论文阅读18》 SSD: Single Shot MultiBox Detector

一、论文 研究领域&#xff1a; 2D目标检测论文&#xff1a;SSD: Single Shot MultiBox Detector ECCV 2016 数据集 论文链接论文github 二、论文概要 SSD网络是作者Wei Liu在ECCV 2016上发表的论文。对于输入尺寸300x300的网络 使用Nvidia Titan X在VOC 2007测试集上达到74…

Datawhale Django后端开发入门 Vscode TASK02 Admin管理员、外键的使用

一.Admin管理员的使用 1、启动django服务 使用创建管理员之前&#xff0c;一定要先启动django服务&#xff0c;虽然TASK01和TASK02是分开的&#xff0c;但是进行第二个流程的时候记得先启动django服务&#xff0c;注意此时是在你的项目文件夹下启动的&#xff0c;时刻注意要执…

微信小程序 echarts 画多个横向柱状图

然后是json {"usingComponents": {"ec-canvas": "../../common/ec-canvas/ec-canvas"},"navigationBarTitleText": "主题活动" } ec-canvas获取方式 在链接里下载代码 然后copy ec-canvas文件夹到自己的项目 https://gi…

会计资料(借贷记账法、试算平衡)

6.借贷记账法 这样的格式是会计学家提出的。 6.1 借贷记账法的详细使用 这里要把会计的六大分类搞明白&#xff0c;才能够使用借贷记账法 6.2 借贷记账法的记账规则 6.3 借贷记账法下的账户与会计分录 6.4 会计分录的介绍 这里一笔会计分录只能写一笔经济业务&#xff0c;或者…

使用 Ansible Galaxy 安装角色

使用 Ansible Galaxy 安装角色 使用 Ansible Galaxy 和要求文件 /home/curtis/ansible/roles/requirements.yml 。从以下 URL 下载角色并安装到 /home/curtis/ansible/roles &#xff1a; http://rhgls.area12.example.com/materials/haproxy.tar 此角色的名称应当为 balancer …

Cpp学习——list的模拟实现

目录 一&#xff0c;实现list所需要包含的三个类 二&#xff0c;三个类的实现 1.list_node 2.list类 3.iterator_list类 三&#xff0c;功能实现 1.list类里的push_back() 2.iterator类里的运算符重载 3&#xff0c;list类里面的功能函数 1.insert&#xff08;&#xff…

认识负载均衡||WEBSHELL

目录 一、负载均衡 1.nginx负载均衡算法 2.nginx反向代理-负载均衡 二、webshell 1.构造不含数字和字母的webshell 2.如何绕过 一、负载均衡 1.nginx负载均衡算法 &#xff08;1&#xff09;轮询&#xff08;默认&#xff09;每个请求按时间顺序逐一分配到不同的后端服务&…

vue3 setup语法糖导入mixin

像这样直接导入&#xff0c;然后通过defineOptions声明mixin 然后就可以在这个组件使用mixin里的数据和方法了