题目:
有一块宝石,1级升2级成功率100%,2级升3级成功率80%,3级升4级成功率60%,4级升5级成功率40%,每次升级失败时降回到1级。请问一块1级宝石升到5级平均要多少次?
思路:
问题:求一块1级宝石升级到5级的期望次数
1、蒙特卡洛模拟试验
考虑一下期望的定义,所有的可能的次数*出现该次数的概率之和。出现的次数可能为无穷大,但当次数达到一定数量时,期望就收敛了,因此可以通过概率的模拟试验来实现。
2、有限状态机的概率转移思想
假设dp(i,j)为1级升到5级的平均次数,则有以下递推式:
dp(1,5) = 1.0 * dp(2,5) + 0.0 * dp(1,5)+1
dp(2,5) = 0.8 * dp(3,5) + 0.2 * dp(1,5)+1
dp(3,5) = 0.6 * dp(4,5)+ 0.4 * dp(1,5)+1
dp(4,5) = 0.4 * dp(5,5) + 0.6 * dp(1,5)+1
其中dp(5,5)=0;
求解上述方程组,得到dp(1,5)即为答案,答案为17.0833.
代码:
1、蒙特卡洛模拟试验
#include <iostream>
#include <time.h>
#include <stdlib.h>
#include <iomanip>using namespace std;bool isUpgrade(double p){double prob=rand()/(double)(RAND_MAX);if(prob<=p)return true;elsereturn false;
}double ExpectedUpgradeTimes(double *P,int n){const int TIMES=100000000;int grade=0;int times=0;int total=0;double expect=0;for(int i=0;i<TIMES;i++){grade=0;times=0;while(grade!=n-1){if(isUpgrade(P[grade]))grade++;elsegrade=0;times++;}total+=times;}expect=(double)total/TIMES;return expect;
}int main(){srand((unsigned int)time(NULL));double P[]={1.0,0.8,0.6,0.4};int len=sizeof(P)/sizeof(P[0]);double exp=ExpectedUpgradeTimes(P,len+1);cout<<fixed<<exp<<endl;cout << setprecision(2) << exp << endl;return 0;
}
2、动态规划
#include <iostream>
#include <time.h>
#include <stdlib.h>
#include <iomanip>using namespace std;double ExpectedUpgradeTimes_DP(double *P,int n){double A[n],B[n];double p[n];p[1] = 1.0;p[2] = 0.8;p[3]=0.6;p[4] =0.4;for(int i=4;i>=1;i--){A[i] = 1+A[i+1]*p[i];B[i] = p[i]*B[i+1]+1-p[i];cout<<A[i]<<" "<<B[i]<<endl;}double t = A[1]/(1-B[1]);return t;
}int main(){srand((unsigned int)time(NULL));double P[]={1.0,0.8,0.6,0.4};int len=sizeof(P)/sizeof(P[0]);double exp=ExpectedUpgradeTimes_DP(P,len+1);cout<<fixed<<exp<<endl;cout << setprecision(2) << exp << endl;return 0;
}