数字图像处理--3.图像增强

一、图像增强的点运算

图像增强:采用一系列技术,改善图像的视觉效果,或者将图像转换成一种更适合于人或者机器进行分析和处理的形式。

图像增强方法:1.空间域增强:直接对图像各像素进行处理;2.对图像进行傅里叶变换后的频谱成分进行处理,然后逆傅里叶变换得到需要的图像。

目的:
1.改善图像的视觉效果,有利于识别、跟踪和理解图像中的目标。

2.突出图像中感兴趣的信息,抑制不需要的信息,来提高图像的使用价值;

 

一、对比度增强

扩大图像中感兴趣特征的目标;方法:1.灰度变换法,2.直方图调整法

灰度变换是图像增强的重要手段之一,通过调整图像的灰度动态范围或者调整图像的对比度对图像增强。

对比度:明暗的对比程度。可以调整图像的灰度范围对图像进行增强。

1)线性变换:令图像f(i,j)的灰度范围为[a,b],线性变换后图像g(i,j)的范围为[a',b'],这个图是一个线性变换,得到g(i,j)与f(i,j)之间的关系式:

例子:如果图像生成时存在曝光不足或过度的情况,图像灰度可能会局限在一个很小的范围内。在显示器上看到的是一个模糊不清、似乎没有什么灰度层次的图像。

 

对曝光不足的图像用线性变换对图像每一个像素灰度作线性拉伸(由上图)。可看到有效的改善图像视觉效果。

2)分段线性变换

如果只对图像中部分目标感兴趣,这时候需要突出感兴趣目标所在的灰度区间,抑制不感兴趣的灰度区间,分段线性变换可以解决这类问题。

设原图像f(x,y)在[0,M_{_{}}f],感兴趣目标的灰度范围在[a,b],要把这个灰度范围拉伸到[c,d],可以得到对应的分段线性变换表达式:

从表达式和图中可以看出,在[0,a)和(b,M]灰度区间内图像是被压缩的。

3)非线性灰度变换

与线性变换不同,非线性变换使用非线性函数作为映射函数,如对数函数,指数函数等,实现对图像灰度的非线性变换。

 

二、对比度增强直方图均衡化

灰度直方图:用来反映数字图像中每一灰度级与这个灰度级出现频率之间的关系,能描述图像的概貌。

直方图修正法包括直方图均衡化直方图规定化。

直方图均衡化:将原图像通过某种变化,得到一幅灰度直方图均匀分布的新图像。

假设用r表示归一化的原图像灰度;用s表示经过直方图修正后的图像灰度。即0<=r,s<=1 在[0,1]区间内的任一个r值,都可产生一个s值,且

s=T(r)

T(r)称为变换函数,满足下列条件:

1.在0<=r<=1内T(r)为单调递增函数; 2.在0<=r<=1内,有0<=T(r)<=1;

条件1保证灰度级从黑到白的次序不变; 条件2确保映射后的像素灰度在允许的范围内。

反变换关系为

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491814.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

腾讯姚星:两大科技矩阵助力两张网,立志攻克通用人工智能和多模态问题

来源&#xff1a;腾讯AI实验室5月21日&#xff0c;2019腾讯全球数字生态大会在昆明滇池国际会展中心开幕。本次大会由云南省人民政府指导&#xff0c;云南省文化和旅游厅、昆明市人民政府、腾讯公司共同主办&#xff0c;是腾讯战略升级后&#xff0c;整合互联网数字经济峰会、云…

nginx的学习(配置文件,以及部署的疑惑)

1、在windows下安装nginx&#xff0c;解压之后&#xff0c;在此目录下&#xff0c;dos进去&#xff0c;start nginx 2、配置文件&#xff1a; http { include mime.types; default_type application/octet-stream; sendfile on; keepalive_timeou…

python将数据集分成训练样本和类标签

这里假设 类标签为largeDoses, smallDoses, didntLike三类&#xff0c;假设训练样本有三个特征属性&#xff0c;类标签放在数据集的最后一列 import numpy as npdef file2matrix(filename): # filename是文件保存地址love_dictionary {largeDoses:3, smallDoses:2, didntLik…

图像处理-5

1.图像的数学变换 空间域&#xff1a;图像的代数运算和几何运算都是利用对输入图像进行加工而得到输出图像 转换空间&#xff1a;最典型的有离散傅里叶变换将原定义在图像空间的图像以某种形式转换到另外一些空间&#xff0c;并利用输入图像在这些空间的特有性质有效而快速地…

量子算法、DNA计算与后经典计算时代

来源&#xff1a;资本实验室二进制与伟大的计算机相结合&#xff0c;推动人类进入了信息化时代。在这个基于物质世界的&#xff0c;由0和1构成的新世界中&#xff0c;我们依靠算法和电子技术不断解决了大量曾经无法解决的问题。然而&#xff0c;好奇的人类总是善于提出新的、更…

Oracle Comment 获取并修改表或字段注释

select * from dba_tables where owner DINGYINGSI; select * from user_col_comments where table_name STUDENT;comment on table "STUDENT" is 这是学生信息表; comment on column STUDENT.ID is 这是一个学生的ID;注意表名的大小写 转载于:https://www.cnblogs…

使用Matplotlib创建散点图

假设data是m行两列的训练样本&#xff0c;labels是m行一列的类标签&#xff0c;类标签一共有3类&#xff0c;分别用1、2、3表示&#xff0c;现将data用散点图表示出来&#xff0c;且不同类的样本有不同的颜色&#xff1a; import matplotlib.pyplot as pltfig plt.figure() a…

数字图像-6空域滤波

空域处理 基本概念&#xff1a; 理论基础——线性系统响应&#xff1a;卷积理论 卷积的离散表达式&#xff0c;基本上可以理解为模板运算的数学表达式 由此&#xff0c;卷积的冲击响应函数h(x,y)&#xff0c;称为空域卷积模板。 空域滤波及滤波器的定义 使用空域模板进行的…

特斯拉烧,特斯拉烧完蔚来烧

来源&#xff1a;36氪最关键的问题还是在电池。又一台蔚来汽车自燃了。5月16日&#xff0c;上海嘉定一个小区的地下车库&#xff0c;一台黑色的蔚来ES8突然冒出大量浓烟。消防人员及时赶到&#xff0c;扑灭烟雾并封锁了现场&#xff0c;才没有引起火灾。根据车主的描述&#xf…

超出内容用省略号替代

最近学习了一下怎么用省略号代替超出的文本。 虽然网上的资料很多&#xff0c;但俗话说得好&#xff0c;好记性不如烂笔头&#xff0c;还是记一下吧&#xff01; 有两种方法&#xff0c;第一是用CSS实现&#xff1b;第二是用js HTML <p id"text">9月10日&#…

python数据归一化

在机器学习中&#xff0c;往往需要归一化数据集&#xff0c;下面的公式可以把数据归一化到0~1区间&#xff1a; newvalue &#xff08;oldvalue - min&#xff09;/&#xff08;max - min&#xff09; python实现的代码如下&#xff1a; def autoNorm(dataSet):minVals da…

数字图像处理-7频域滤波

傅里叶变化特性及其应用

福布斯发布2019全球品牌价值100强:华为上榜苹果夺冠

来源&#xff1a;世界科技创新论坛百强品牌中&#xff0c;有56个来自美国公司&#xff0c;前10名中有80%是美国公司的品牌。德国、法国和日本排在美国之后&#xff0c;分别有11个、7个、6个品牌上榜。上榜品牌共来自16个国家。5月23日&#xff0c;福布斯发布了一年一度的全球品…

python读取图像矩阵文件并转换为向量

假设图像矩阵大小为3232&#xff0c;将其转换为向量&#xff0c;首先创建11024的NumPy数组&#xff0c;然后打开给定的文件&#xff0c;循环读出文件的前32行&#xff0c;并将每行的头32个字符值存储在NumPy数组中 import numpy as npdef img2vector(filename):returnVect np…

PHP中一些有用的函数

<?php/** * 加密解密* * param string $key* param string $string* param string $decrypt* return string */ function encryptDecrypt($key, $string, $decrypt) {if($decrypt){$decrypted rtrim(mcrypt_decrypt(MCRYPT_RIJNDAEL_256, md5($key), base64_decode($stri…

一文读懂你该了解的5G知识:现在别买5G手机

来源&#xff1a; 腾讯科技2019年是中国全力布局5G的一年&#xff1a;三大运营商纷纷搭建基站&#xff0c;手机厂商发布5G手机&#xff0c;部分城市已经开启了5G测试……在电信日这天&#xff0c;腾讯科技联合知乎推出重磅策划&#xff0c;聚焦和5G相关的小知识&#xff0c;精选…

mnist手写数字数据集下载

下载地址&#xff1a;http://yann.lecun.com/exdb/mnist/

C#黑白棋制作~

前些天自己复习一下C#语言 做了个黑白棋&#xff0c;望大家看一下&#xff0c;可能有些bug嘿嘿 链接如下 http://files.cnblogs.com/files/flyingjun/%E9%BB%91%E7%99%BD%E6%A3%8BV1.2.rar 还有源文件 http://files.cnblogs.com/files/flyingjun/%E9%BB%91%E7%99%BD%E6%A3%8B.r…

未来可能发生的十大颠覆性创新

转自&#xff1a;工信头条本文发表于《中国工业和信息化》杂志2019年5月刊总第12期科技作家凯文凯利认为&#xff1a;“未来在其初期将发展得非常缓慢&#xff0c;随之便可一蹴而就。”随着时间缓慢出现的规模化变革很容易被忽视&#xff0c;但实际上在一个快速创新的世界中&am…

Python计算信息熵

计算信息熵的公式&#xff1a;n是类别数&#xff0c;p(xi)是第i类的概率 假设数据集有m行&#xff0c;即m个样本&#xff0c;每一行最后一列为该样本的标签&#xff0c;计算数据集信息熵的代码如下&#xff1a; from math import logdef calcShannonEnt(dataSet):numEntries …