贝叶斯网络之父:当前的机器学习其实处于因果关系之梯的最低层级

640?wx_fmt=jpeg

来源:大数据文摘


每当提起“无人驾驶”汽车技术如何强大,又被大众赋予了怎样的期待,都会让人想起HBO电视剧Silicon Valley《硅谷》中的一个情节:

 

硅谷大亨风险资本家Gregory的助手安排了一辆无人驾驶汽车送创业公司的小员工Jared回家,本以为这个剧情只是为了诠释一种硅谷式傲慢,刚上车时一切也都很顺利,谁知路程走了一半,这辆汽车突然开始执行日程中之前设置好的指令,罔顾乘客Jared高呼着“Stop”和“Help”,自顾自的奔向了另一个目的地:四千英里开外的一个荒无人烟的海中孤岛。

 

640?wx_fmt=jpeg640?wx_fmt=jpeg

电视剧《硅谷》截图

 

Jared最终得救了,就在大家以为剧情要改为《荒岛余生》后。对多数观众而言这只是剧中设置的一个黑色笑点,而艺术本就源于现实,在现实中,若无人驾驶的汽车突然失控,会导致怎样的后果才是真的难以想象。

 

2016年5月7日,美国佛罗里达州,一位驾驶特斯拉Model S的车主使用了自动驾驶(Auto Pilot)模式后,发生车祸并身亡。这是第一起自动驾驶模式下的致死车祸,这次事故也让所有为无人驾驶狂热的人们不得不直面这项技术带来的安全隐忧。

 

特斯拉曾发布消息:

 

“无人车的正确率达到99%相对容易,但要达到99.9999%却要困难的多,而这才是我们最终的目标,因为以70英里每秒行驶的车如果出现故障后果不堪设想。

 

特斯拉并没有说100%。

 

在未来,即便这些科技公司声称无人驾驶的技术已经发展到无比成熟,或许依然有人很难放心的坐上一辆无人驾驶的汽车,从心理角度来说,这类汽车相对“自我操控”而言永远都“不够安全”。

 

无人驾驶技术的巨大发展离不开深度学习算法,而在贝叶斯网络之父朱迪亚·珀尔(Judea Pearl)的眼里,深度学习,恰恰是人工“不”智能的体现,因为其研究对象是相关关系而非因果关系,处于因果关系之梯的最底层。珀尔曾在《量子杂志》采访中说到:深度学习取得的所有巨大成就在某种程度上都不过是对数据的曲线拟合而已。从数学层次的角度来看,不管你如何巧妙地操作数据,以及你在操作数据时读取的内容,它仍然是一个曲线拟合的训练过程,尽管它看起来比较复杂。

 

人工智能的发展在很多方面都得益于珀尔早期的研究,他却在最新著作《为什么:关于因果关系的新科学》中推翻了自己,珀尔认为,当前的人工智能和机器学习其实处于因果关系之梯的最低层级,只可被动地接受观测结果,考虑的是“如果我看到……会怎样”这类问题。而强人工智能,则需要实现第三层级的“反事实”推理。

 

例如,如果无人驾驶汽车的程序设计者想让汽车在新情况下做出不同的反应,那么他就必须明确地在程序中添加这些新反应的描述代码。机器无法自己弄明白手里拿着一瓶威士忌的行人可能对鸣笛做出不同反应,处于因果关系之梯最底层的任何运作系统都不可避免地缺乏这种灵活性和适应性。所以说,无法进行因果推断的人工智能只是“人工智障”,是永远不可能透过数据看到世界的因果本质的。

       640?wx_fmt=jpeg因果关系之梯的每一层级都有一种代表性生物

(来源:《为什么:关于因果关系的新科学》马雅·哈雷尔绘图)

 

2016年3月,AlphaGo 以4比1的成绩战胜了多年来被认为是最强的人类顶尖围棋高手李世石,震惊了世界,在为人们带来危机感的同时,也点燃了很多人对人工智能发展的畅想。

 

可惜,这一人工智能壮举只能证明:对让机器完成某些任务来说,深度学习是有用的。人们最终意识到,在可模拟的环境和状态下,AlphaGo的算法适用于大规模概率空间的智能搜索,而对于那些难以模拟的环境里的决策问题(包括上文提到的自动驾驶),这类算法也还是束手无策。深度学习采用的方法类似卷积神经网络,并不以严谨或清晰的方式处理不确定性,且网络的体系结构可以自行发展。完成一个新的训练后,程序员也不知道它正在执行什么计算,或者为何它们有效。

 

AlphaGo团队并没有在一开始就预测到这个程序会在一年或者五年内击败人类最好的棋手,他们也无法解释为什么程序执行能产生这样好的结果。如果机器人都如同 AlphaGo一般,缺乏清晰性,那么人类也无法与他们进行有意义的交流,使之“智能”的工作。

 

假定你的家中有一个机器人,当你睡觉的时候,机器人打开了吸尘器,开始工作,在这时你告诉它,“你不该吵醒我。”你的意图是让它明白,此时打开吸尘器是错误行为,但你绝不希望它将你的抱怨理解为不能再在楼上使用吸尘器。

 

那么此时机器人就必须理解背后的因果关系:吸尘器制造噪音,噪音吵醒人,而这会使你不高兴。

 

这句对我们人类而言无比简短的口令实际包含了丰富的内容。机器人需要明白:你不睡觉的时候它可以吸尘,家中无人的时候它也可以吸尘,又或者吸尘器开启静音模式的时候,它仍然可以吸尘。这样看来,是否觉得我们日常沟通所含的信息量实在是太过庞大?

 

         640?wx_fmt=jpeg   

一个聪明的机器人考虑他/她的行为的因果影响。

(来源:《为什么:关于因果关系的新科学》马雅·哈雷尔绘图)


所以说,让机器人真正“智能”的关键在于理解“我应该采取不同的行为”这句话,无论这句话是由人告诉它的,还是由它自己分析所得出的结论。如果一个机器人知道自己当前的动机是要做 X=x0,同时它能评估一下,说如果换一个选择,做 X=x1,结果会不会更好,那它就是强人工智能。

 

《人类简史》的作者尤瓦尔·赫拉利(Yuval Noah Harari)认为人类发展出描绘虚构事物的能力正是人类进化过程中的认知革命,反事实推理是人类独有的能力,也是真正的智能。人类的每一次进步与发展,都离不开反事实推理,想象力帮助人类生存、适应并最终掌控了整个世界。若想实现真正的强人工智能,则应尝试将因果论提供的反事实推理工具,真正加以应用。

 

针对能否开发出具备自由意志的机器人的问题,珀尔的答案是绝对会。他认为:人们必须理解如何编程机器人,以及能从中得到什么。由于某种原因,就进化方面而言这种自由意志在计算层面也将是需要的。机器人具备自由意志的第一个迹象将是反事实沟通,如“你应该做得更好”。如果一组踢足球的机器人开始用这种语言沟通,那么我们将知道它们具备了自由意志。“你应该传球给我,我刚才一直在等,但你没有把球传给我!”这种“你应该”的句式意味着你本应该做什么,但是没做。因此机器人产生自由意志的第一个征兆是沟通,第二个是踢出更好的足球。

 

以前人们讨论强人工智能大多只限于哲学层面,学术界也一直对“强人工智能”保持着谨慎的态度,并不敢抱有太多奢望。但科学的进步从不因失败而停止,不管是无人驾驶,还是其他各项人工智能技术的发展,最终都依赖于“人”,人类会研究出能够理解因果对话的机器人吗?能制造出像三岁孩童那样富有想象力的人工智能吗?回答这些问题的关键依然离不开“人:,如果人类自身还无法理解因果之梯,又要怎么样使“人工”变得“智能”?

 

机器不必复制人类,却可以比人类表现的更优秀,这着实是一个可怕的事实。若是能用因果关系来取代关联推理,沿着因果关系之梯,走入反事实推理的世界,那么机器的崛起便不可阻挡。珀尔在书中为如何实现这一目标给出了相当清晰通俗的讲解。

 

回想起来,其实一个人的日常生活与“人工智能”这个词并没有产生多少紧密关联,但很多人也曾在得知AlphaGo战胜李世石那个瞬间,产生了一股莫名又强烈的敬畏感。科技的发展速度似乎总是超出我们的想象,打开手机搜索“重大突破”这个关键词,瞬间就会被满眼的科技快餐所淹没,机器究竟会变成怎样?它们又会怎么对待人类?只有试着去理解因果关系,才能在面对这些问题时,少一些茫然,多一些信念。


未来智能实验室是人工智能学家与科学院相关机构联合成立的人工智能,互联网和脑科学交叉研究机构。


未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。


  如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”

640?wx_fmt=jpeg

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/491234.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

QT学习笔记(十五):QLabel的点击事件(clicked)添加

QT学习笔记(十五):QLabel的点击事件(clicked)添加 Qt之添加QLabel的点击事件 QLabel功能为显示了一个字符串或者图片等信息,它本身没有click信号。也就不能够响应click点击事件,有什么办法来实…

引用文献管理软件Mendeley

Mendeley是一款强大的文献管理软件,只需要把引用的文献导入进去,就可以生成各种风格的文献引用格式 首先去官网下载Mendeley:https://www.mendeley.com/download-desktop/ 安装好,打开后点击add添加文献: 添加文献的方…

​忆阻器会成为“存储墙”的破局者么

来源:半导体行业观察在计算量和数据量变得越来越大的今天,计算和存储成为了下一步科技发展中要面临的两座大山,下一代高性能计算机系统必须突破存储墙问题。在过去,这两者一直都是各自发展,再通过下游产品产生交集。但…

Halcon学习笔记(一):Qt+Halcon联合开发配置

Halcon学习笔记(1):QtHalcon联合开发配置 首先是新建一个QT项目qtest_hc 方法一: 1)QT项目文件 qtest_hc 添加库: #1.包含目录添加 INCLUDEPATH D:/MVTec/HALCON-13.0/include INCLUDEPATH D:/MVTec/HALCON-13.0/include/halconcpp#2.链…

C1. 组队活动 Small(BNUOJ)

C1. 组队活动 SmallTime Limit: 1000msMemory Limit: 131072KB64-bit integer IO format: %lld Java class name: MainSubmit Status PID: 51280BNU ACM校队一共有名队员,从到标号,现在名队员要组成若干支队伍来相互学习、共同进步,为了…

窥见人工智能四十年 2019 CCF-GAIR全球人工智能与机器人峰会今日开幕

编者按:7月12日-14日,2019年全球人工智能与机器人峰会(CCF-GAIR)正式开幕,该峰会由中国计算机学会(CCF)主办,雷锋网、香港中文大学(深圳)承办,深圳…

神经网络的反向传播推导实例

假设,你有这样一个网络层: 第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之…

AI赌神升级!无惧bluff,6人局德扑完胜世界冠军,训练只用了8天

大数据文摘出品2017年年初,Brain vs AI的德州扑克人机大战在卡耐基梅隆大学(CMU)落幕,由4名人类职业玩家组成的人类大脑不敌人工智能程序Libratus。获胜后人类还遭到了Libratus的无情嘲讽。但是那时候Libratus还只是个只能在1V1局里称霸的超级玩家&#…

pytorch报错RuntimeError: error in LoadLibraryA

这是因为腾讯管家把某个文件当成病毒删除了,恢复该文件即可 恢复腾讯管家杀毒误删文件方法: https://jingyan.baidu.com/article/6766299763dab854d41b8457.html

OpenCV示例学习(二): 基本图形绘制算子:line(),circle(),fillPoly(), ellipse()

OpenCV示例学习&#xff08;二&#xff09;&#xff1a; 基本图形绘制算子&#xff1a;line(),circle(),fillPoly(), ellipse() #include <opencv2/opencv.hpp>using namespace cv;#define WINDOW_NAME1 "【绘制图1】" //为窗口标题定义的宏 #define W…

动荡的 2019:数据和 AI 生态圈

来源&#xff1a;云头条这是数据领域又一个激烈动荡的年头&#xff0c;令人兴奋&#xff0c;但又错综复杂。随着越来越多的人上网&#xff0c;一切继续在加快“数据化”的步伐。这个大趋势的发展势头越来越猛&#xff0c;归因于基础设施、云计算、AI和开源各个领域取得的进步的…

无线通信界的3大天王,谁能驾驭百亿台IoT设备?

来源&#xff1a;物联网智库导 读数量爆发式增长的背后&#xff0c;Wi-Fi、蓝牙、Zigbee三大无线连接技术正上演一场“争霸赛”。本文通过对三项技术的详细对比&#xff0c;以分析三项技术在具体应用场景中的优劣势。根据前瞻产业研究院发布的《2018—2023年中国物联网行业细分…

腾讯张正友:计算机视觉的三生三世

本文转载自&#xff1a;腾讯AI实验室本文将介绍腾讯 AI Lab & Robotics X 主任张正友博士在 CCF-GAIR 2019 大会上所做的报告&#xff0c;讲述计算机视觉研究的历史和未来。7 月 12 日-7 月 14 日&#xff0c;2019 第四届全球人工智能与机器人峰会&#xff08;CCF-GAIR 201…

未来50亿年科学预测

来源&#xff1a;宇宙解码近期未来史现今——公元2500年公元2020年 三维全息电视将进入生活&#xff0c;人们可以通过付费点播观看。公元2025年 氢燃料电池技术将给交通运输领域带来革命&#xff0c;氢燃料电池汽车将开始中批量生产。餐桌上会出现具有肉类营养特征的植物。培养…

OpenCV学习笔记(二):3种常用访问图像中像素的方式

OpenCV学习笔记&#xff08;二&#xff09;&#xff1a;3种常用访问图像中像素的方式 #include <opencv2/opencv.hpp>using namespace cv; using namespace std;int main() {//【1】创建原始图并显示Mat srcImage imread("F:/C/2. OPENCV 3.1.0/TEST/11.jpg"…

水题 UVA 1586 - Ancient Cipher化学式分子量计算

原题见&#xff1a;http://acm.hust.edu.cn/vjudge/contest/view.action?cid106424#overview 题目要求&#xff0c;根据所给化学量与原子量计算化学式的相对分子质量。。。其实就是怎么对应起来的事。 代码如下&#xff1a; 1 #include <stdio.h>2 //给出一种物质的分子…

【边缘计算】边缘计算元年一文看懂云边协同!九大场景带来新一轮信息革命...

来源&#xff1a;产业智能官2019 年边缘计算备受产业关注&#xff0c;一度引起了资本市场的投资热潮&#xff0c;很多人把 2019 年称作边缘计算的元年。理性来看&#xff0c;造成如此火爆局势难免有一些炒作因素在推波助澜&#xff0c;毕竟边缘计算的概念存世也已多年。当然&am…

OpenCV学习笔记(三):多通道图像分离、混合算子:split(),merge()

OpenCV学习笔记&#xff08;三&#xff09;&#xff1a;多通道图像分离、混合算子&#xff1a;split(),merge() #include <opencv2/opencv.hpp>#define BRG_BLUE_CHANNEL 0 #define BRG_GREEN_CHANNEL 1 #define BRG_RED_CHANNEL 2using namespace cv;int main(int argc…

pytorch两种常用的学习率衰减方法

阶梯式衰减 torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma0.1, last_epoch-1) 每个训练step_size个epoch&#xff0c;lr会自动乘以gamma LR 0.01 optimizer Adam(model.parameters(),lr LR) scheduler torch.optim.lr_scheduler.StepLR(optimizer,step_s…

[转]retina屏下支持0.5px边框的情况

2014-12-31更新&#xff1a;截至到IOS8.1&#xff0c;safari仍不支持supports待safari支持supports, 就可以利用0.5px了&#xff01; 2014-7-25更新&#xff1a;1. 修正dpr 1.5 机器下四角边框的缩放比例&#xff1b;2. 修正右边框&#xff08;rBor&#xff09;的transform-or…