卡耐基梅隆大学生物医学工程系主任贺斌教授(照片由本人提供)
来源: 知识分子
撰文 | 李澄宇(中科院神经所PI)
赵维杰(NSR新闻编辑)
脑机接口能做什么?带上电极帽,你可以在实验室中用意念控制无人机飞行;在大脑皮层中植入电极,瘫痪病人能够用意念打字或者驱动轮椅。无论是无创还是有创的脑机接口,都试图在人类大脑与外部机器之间建立连接。过去几十年中,脑机接口技术稳步发展,一步步从科幻走向现实,也开始从实验室走向生活。2019年7月,埃隆·马斯克旗下 Neuralink 公司发布了一款缝纫机式的外科机器人,它可以在头骨上打洞,并将3072个微电极置入大脑皮层。
最近,《国家科学评论》(National Science Review,NSR)采访了卡耐基梅隆大学生物医学工程系主任贺斌。贺斌是无创脑机接口领域的优秀科学家,2013年,他的研究团队利用无创脑机接口技术,实现了意念控制无人机飞行并跨越障碍,2019年,他的团队又实现了意念控制下机械臂对运动光标的连续追踪。在这次访谈中,贺斌谈到了脑机接口技术的历史与未来应用方向,并着重介绍了无创脑机接口相关的机遇与挑战。
脑机接口的历史与现状
NSR:如果要向普通人介绍脑机接口技术,您会怎么介绍?
贺斌:我认为脑机接口包含两个方面。第一方面是现在大众比较感兴趣的:我们可以检测人的大脑信号,解码其中的含义,再用这个含义去控制机器,这里所说的机器可以是机械臂、无人机、电脑等等。但是从广义上讲,脑机接口还包括另一个方面:我们可以不只是被动地接收大脑信号,还可以把电、磁、声等信号传入大脑,来刺激或者调控神经回路的活动。目前,这种神经调控技术主要用于疾病治疗。
NSR:脑机接口技术的发展历史上有哪些重要事件?
贺斌:脑机接口(brain-computer interface,BCI)这个概念是Jacques Vidal 在20世纪70年代提出的。这之后的一个重大进展是,科学家可以通过脑电信号检测,以无创的方式用意念驱动光标在屏幕上做一维运动。这项成果的出现,让科学界和大众都对脑机接口产生了兴趣,政府和资助机构也开始愿意资助这个研究领域。2004年 Jonathan Wolpaw 和同事在PNAS上发表了一篇文章,他们可以用意念驱动光标做上下左右的二维运动。这又是无创脑机接口领域的一个重大进展。后来,包括我的团队在内,无创脑机接口领域的研究者开始尝试不只是驱动虚拟光标做简单的二维运动,而是去驱动更贴近物理实际的实体做更复杂的三维运动,包括无人机、机械臂等。
在有创脑机接口领域,杜克大学的 Miguel Nicolelis 团队早期在猴子的脑中植入电极,来控制电脑光标的运动。后来匹兹堡大学 Andrew Schwartz 及同事也做了很多工作,在猴子和人身上做实验,可以控制虚拟的光标,也可以控制实体的机械臂。再后来,布朗大学、斯坦福大学、伯克利大学、卡耐基梅隆大学、加州理工学院等许多高校的研究者都开始进行有创脑机接口的研究,也取得了很多进展。
现在,有创脑机接口领域还有一个新的方向,就是双向脑机接口,在机械臂触碰到物体后,可以用电信号刺激体感皮层,让受试者感觉到自己触碰到了物体。而不是像从前一样,受试者只能通过视觉来了解控制的结果。
NSR:您自己是怎么进入脑机接口领域的?
贺斌:我最初的研究方向是神经成像。将近20年前,在伊利诺伊大学工作期间我开始注意到脑机接口领域。那时候人们对于脑机接口技术的可行性和发展前景还有很多疑问,不少人都不完全相信。作为一个科学家,我想与其这样猜测,等着其他实验室来验证,还不如我自己去探索一下。于是我开始在自己的实验室做相关的工作,并且越做越觉得有意思。所以后来我从伊利诺伊大学到明尼苏达大学,两年前又到卡耐基梅隆,一直都在做这个方向。当然,除了受好奇心的驱使,我也希望看到脑机接口技术能够造福更多的患者,提高他们的生活质量。我想大部分的脑机接口研究者都有这样的期望。
NSR:您在自己身上用过BCI吗?
贺斌:没有。我知道有不少科学家会在自己身上做实验。但是我自己有一个习惯,就是我自己从来不做被试。因为我希望自己不要因为做过被试而产生主观的偏见。我不能肯定这样做是不是对的,但我确实没有做过任何一个实验的被试。
无创脑机接口:不只是“粗糙的黑箱”
NSR:基于脑电的无创脑机接口接收和解析的是什么样的神经信号?
贺斌:无创脑机接口可以分为两大类,一类是基于运动想象的,我们让受试者想象自身肢体的运动,接收并且解析他的脑电信号,最终的效果是,当他们在头脑中想象机械臂或者无人机的运动时,外接设备就会随之运动。2004年Wolpaw光标二维移动的工作,以及我自己实验室的工作都属于这一类。另一类是基于事件相关电位(Event-related potential,ERP)的,研究者测量并解析ERP,以此来驱动机器。可供测量的ERP有很多种,比如P300、稳态视觉诱发电位(SSVEP)、听觉诱发电位(AEP)等等。
NSR:和有创测量相比,无创脑电测量的空间精确度还是要差一些?
贺斌:没错,在精确性和直接性方面,无创是比不上有创的。人类大脑中有大概上千亿个神经元,如果你想用脑电去记录每一个神经元的活动,这是永远做不到的。但是我想,也可以从另一个角度来理解这个问题。神经科学研究已经发现,大脑的功能性活动是神经元网络中许许多多神经元共同参与的结果,往往涉及大量神经元的同步活动,而这种同步活动是能够被脑电技术测量到的。所以,一方面,你可以说脑电无法测量单个神经元或者少数几个神经元的活动,另一方面,你也可以说它把单个神经元的活动过滤掉了,只留下神经元群体有意义的集体活动。从这个意义上讲,脑电测量、脑磁测量等无创手段有缺点也有优点,它们对于大脑功能的掌握是有独特意义的。
而且,在实际应用方面,有创的技术很难广泛应用在普通人群中,即便是在患者当中应用,也会面临很多问题。所以无创在应用方面有优势,包括美国国立卫生研究院(NIH)在内的很多机构也越来越认可无创技术。现在脑机接口的研究相当热门,做有创和无创的实验室都比较多。
NSR:做无创的实验室会比做有创的更多吗?
贺斌:应该是更多的,因为做无创的入门门槛相对较低。做实验的话,你需要的基本硬件只有一个电极帽,一套脑电测量装置。如果不做实验只做算法,那就更加容易了。因为脑电领域有一个非常好的传统,很多实验室,包括我的实验室都会把自己的脑电测量数据向全世界公开。这样,全世界任何地方的研究生都可以下载这些数据,利用这些数据去做分析,去开发新的更好的算法。
NSR:深度学习对于脑电信号的解析很有帮助。但是与此同时,脑电解析的过程是不是也变成了一个黑箱?我们不需要理解测量到的信号是从大脑的什么位置发出的,不需要了解信号的实际意义,只要用深度学习算法去做计算就可以了?
贺斌:机器学习的发展确实对大脑数据的解析很有帮助。尤其是在我们很难把脑电信号和单一神经元的活动对应起来的情况下,这样的算法非常有价值。我认为下一代的年轻学生应该把机器学习作为基本技能来掌握。
但是脑电解析的过程也不仅仅是一个黑箱,我们也在努力解析其中的信息,找到大脑活动与脑电信号之间的对应关系。现在的源定位(source localization)和源成像(source imaging)方法,可以把脑电信号定位到大脑皮层的特定位置上,分辨率最高能达到5毫米左右。5毫米的范围内还是包含了非常多的神经元,但是和20年前相比,这样的成就已经是不可想象的,并且已经能为临床提供一定的支持。我们还可以把神经刺激和神经成像结合起来,在对大脑施加刺激之后去做成像和测量,就能够知道大脑在刺激之下会做出什么反应,发出哪些信号。
NSR:在硬件方面,无创脑机接口的信号获取方式有大的进展吗?
贺斌:过去一些年中,头皮电极没有太大的发展。实验室中,我们使用不是很美观的电极帽。现在有些创新公司开发出了看上去非常漂亮的头环产品,但是其中也没有什么新的技术,只是做了一些设计上的改进,让消费者更容易接受。和软件、计算方法上的进步相比,硬件上确实没有根本性的变化。
贺斌(最左)和学生们在进行脑电控制机械臂的实验。(照片由受访者提供)
双向脑机接口:调控大脑
NSR:您刚刚有讲到双向脑机接口,可以向大脑反馈触觉信息,再来指导输出,形成一个闭环。这方面的研究情况如何?
贺斌:在有创脑机接口领域,这是最近的一个研究重点,许多实验室都有相关的尝试。有创脑机接口直接作用于大脑皮层,所以可以比较方便地向大脑反馈信号。无创脑机接口的研究者也想做类似的事情,但是相对来讲并不容易,因为在新的无创神经刺激技术诞生之前,我们很难用可穿戴装备来直接刺激特定的大脑区域。
NSR:广义上来讲,现在已经在医疗上有所应用的大脑刺激方法,应该也属于反向的脑机接口?
贺斌:对,广义上来讲脑深部电刺激(Deep Brain Stimulation,DBS)也可以算是脑机接口的一部分。谈到这里的话,我想介绍我自己实验室正在做的一个方向。以往的大脑刺激疗法大多是用电或者磁的刺激。我们在尝试用无创的方法,用超声信号刺激大脑,达到调控或治疗的效果。传统的电磁刺激有一个局限,根据泊松方程和麦克斯韦方程组,电磁刺激会遇到容积传导(volume conduction)的问题,这使得无创电磁刺激很难完全聚焦。但是超声没有这个问题,它可以非常聚焦地打在大脑中的特定位置上,并且同样可以到达深脑。如果最终能够研发出产品,虽然超声刺激的效果可能比不上DBS,但它可以成为一种无创的临床选择。
NSR:现在似乎已经有用超声做大脑损伤的医疗仪器,你们想做的是更精确的调控,而不是直接破坏大脑?
贺斌:对,是这样。现在不只是我的实验室,好几个国家的不少实验室也在做这样的努力。我个人认为这是很有前景的一个方向。
脑机接口与神经科学
NSR:脑机接口和神经科学都以大脑为研究对象,但是在无创脑机接口方面,神经科学能够做出的贡献似乎有限?
贺斌:相对来讲,有创脑机接口和神经科学之间的联系会更加紧密一些,因为它们都要对神经元和大脑做比较细致的操作,二者之间有很多共享的实验技术手段。但我想对于整个脑机接口技术的长期发展来说,神经科学、计算科学、材料科学等等都是不可或缺的。
NSR:在脑机接口领域,非人灵长类动物的应用情况如何?在应用于人类之前,是否需要在猴子上做实验?
贺斌:在用意识操纵机器方面,有创的研究者会在猴子身上做一部分实验,因为要在人的大脑中植入电极还是比较复杂的事情。但是对于无创来说,我们通常还是直接进行人体实验的,用猴子来做行为实验反而难得多,效果也不好,因为猴子很难配合实验操作,要给它戴上电极帽,让它理解你的实验目的并配合实验都不容易。我在明尼苏达大学的时候做过类似的尝试,确实很难。
当然如果我们要做反向的脑机接口,用外界信号调控大脑,从动物实验(包括但不限于猴子)开始是很自然的选择。
展望:脑机接口的发展方向
NSR:脑机接口领域中,将会产生突破的重点研究方向是什么?
贺斌:在有创脑机接口领域,闭环的脑机接口是许多实验室目前的研究重点。作为旁观者,我认为这是可能在5到10年内产生重要成果的方向。
在无创方面,脑电信号的分析方法一定还会提高。此外,我认为我们不能只做计算,实验是非常重要的。我们一定要把算法用在实际的实验中,做出更贴近实际生活的工作和产品,才能真正推动这一领域的进步。
要做出真正造福人类的技术和产品,我们还需要更多年轻人进入脑机接口领域。这是一个多学科的领域,无论有创还是无创,我们都需要神经科学、工程学, 计算科学、材料科学等各个学科背景的人才。
NSR:中国脑机接口领域的研究进展如何?
贺斌:中国在脑机接口领域做了很多工作,相关的研究者也很多。其中做得比较有特色的,一是清华大学的团队,他们在基于SSVEP(稳态视觉诱发电位)的无创脑机接口方面做得十分出色,是国际上做得比较早,并且实力领先的;二是浙江大学的团队,他们在有创脑机接口领域做了比较多、也非常有特色的工作。其他的中国团队还有很多,但这两个应该是其中最有特色的。
20年内,脑机接口走进患者生活?
NSR:现在有很多创新公司和投资人都关注脑机接口领域,您也创办了自己的公司吗?
贺斌:我还是比较专注在实验室研究上的。我不敢说将来会怎样,但是目前我还没有开公司或者积极投身于脑机接口的商业化应用。
NSR:您觉得埃隆·马斯克Neuralink公司的技术有前景吗?
贺斌:如果新闻报道准确的话,我认为 Neuralink 在技术上是一个重大的突破,和目前高校实验室中的技术相比,它的技术水平前进了一大步。在未来,这种技术是可能应用在癫痫病人等患者身上的。对于这些必须接受手术治疗的患者,Neuralink 的技术可能成为比现有技术更优秀的选择。但我还是认为,在普通大众身上,有创的技术是很难推广的,不管电极多细。无创的脑机接口技术会有更大应用前景。
NSR:在脑机接口的实际应用中,还会遇到一些伦理上的问题。
贺斌:没错,现在在美国已经有很多关于脑机接口伦理问题的讨论。一方面,如果要对人脑做神经调控,一定会面临隐私等问题。另一方面,所有针对大脑的有创技术都面临伦理问题,如何评价它对人体造成的损害,在什么情况下才能将有创手段用于人体,都是需要进一步讨论的。
NSR:您觉得在20年后,脑机接口会在哪些方面实际改变人们的生活?
贺斌:在脑机接口领域,基本上每5年就会有一个比较大的进展。20年后,最主要的应用应该还是在医学领域。20年后,脑控的假肢、脑控的轮椅、脑控的机械手都可能已经走进残疾或瘫痪病人的生活。利用这些脑机接口设备,他们不依赖他人就可以自由行动、自己吃东西、自己控制房间中的电器等等。现在,这一类设备的原型机已经在实验室中出现,但是要把这些技术变得更加可靠、更加稳定,能够真正运用到实际生活中,还需要一段时间。可喜的是,目前许多科学家、政府和私人投资都很关注相关领域,所以我认为在20年的时间内,脑机接口技术进入日常生活的可能性还是很高的。
当然,我们不可能用脑机接口去做所有的事情,正常人可以用脑控设备提高生活质量,但是不需要用机械臂来吃饭。只有那些我们用其他方法不容易实现,但是可以通过脑机接口用意念控制来实现的事情,才是最适合脑机接口产品发展的方向。在脑机接口产业发展的过程中,社会期望和实际产品效果之间会有一个磨合的过程,最后达到平衡。
NSR执行主编蒲慕明参与了访谈。
未来智能实验室的主要工作包括:建立AI智能系统智商评测体系,开展世界人工智能智商评测;开展互联网(城市)云脑研究计划,构建互联网(城市)云脑技术和企业图谱,为提升企业,行业与城市的智能水平服务。
如果您对实验室的研究感兴趣,欢迎加入未来智能实验室线上平台。扫描以下二维码或点击本文左下角“阅读原文”