Graph of Thoughts: Solving Elaborate Problems with Large Language Models

本文是LLM系列文章,针对《Graph of Thoughts: Solving Elaborate Problems with Large Language Models》的翻译。

思维图:用大语言模型解决复杂问题

  • 摘要
  • 1 引言
  • 2 背景与符号
  • 3 GoT框架
  • 4 系统架构和扩展性
  • 5 用例示例
  • 6 延迟量权衡
  • 7 评估
  • 8 相关工作
  • 9 结论

摘要

我们介绍了思维图(GoT):这是一个框架,它将大型语言模型(LLM)中的提示能力提升到思维链或思维树(ToT)等范式之外。GoT的关键思想和主要优势是能够将LLM生成的信息建模为任意图,其中信息单元(“LLM思想”)是顶点,边对应于这些顶点之间的依赖关系。这种方法能够将任意LLM思想组合成协同结果,提取整个思想网络的本质,或使用反馈循环增强思想。我们说明了GoT在不同任务上比现有技术具有优势,例如,与ToT相比,排序质量提高了62%,同时成本降低了31%以上。我们确保GoT可以通过新的思想转换进行扩展,从而可以用于引导新的提示方案。这项工作使LLM推理更接近人类思维或大脑机制,如复现,两者都形成了复杂的网络。

1 引言

2 背景与符号

3 GoT框架

4 系统架构和扩展性

5 用例示例

6 延迟量权衡

7 评估

8 相关工作

9 结论

提示工程是大型语言模型(LLM)研究的核心新领域之一。它能够有效地使用LLM,而无需任何模型更新。然而,设计有效的提示是一项具有挑战性的任务。
在这项工作中,我们提出了思维图(GoT),这是一种新的范式,使LLM能够在没有任何模型更新的情况下有效地解决不同的任务。关键思想是将LLM推理建模为任意图,其中思想是顶点,思想之间的依赖关系是边。
这使得思想能够进行新颖的转换,例如聚合。人类的任务解决通常是非线性的,它包括将中间解决方案组合成最终解决方案,或者在发现新的见解时改变推理流程。GoT通过其图形结构反映了这一点。
GoT优于其他提示方案,例如,确保排序质量比ToT提高62%,同时降低成本>31%。我们还为提示方案提出了一个新的度量,即思维量,以指示给定LLM输出可以携带的信息范围,其中GoT也很出色。这为更具原则性的提示工程迈出了一步。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48761.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

记一次await和async使用

参考 https://www.cnblogs.com/huangxincheng/p/14754776.html https://www.cnblogs.com/xiaoxiaotank/p/13529413.html .NET Core 2.0 应用程序高级调试: 完全掌握Linux、macOS和Windows跨平台调试技术 Mark下,回家里写。 大致是不要在有界面的窗体,不…

Java并发三大利器之深度解析

推荐阅读 AI文本 OCR识别最佳实践 AI Gamma一键生成PPT工具直达链接 玩转cloud Studio 在线编码神器 玩转 GPU AI绘画、AI讲话、翻译,GPU点亮AI想象空间 资源分享 「java、python面试题」来自UC网盘app分享,打开手机app,额外获得1T空间 https://dr…

springMVC之视图

文章目录 前言一、ThymeleafView二、转发视图三、重定向视图四、视图控制器view-controller五、补充总结 前言 SpringMVC中的视图是View接口,视图的作用渲染数据,将模型Model中的数据展示给用户。 SpringMVC视图的种类很多,默认有转发视图和…

vscode远程调试

安装ssh 在vscode扩展插件搜索remote-ssh安装 如果连接失败,出现 Resolver error: Error: XHR failedscode 报错,可以看这篇帖子vscode ssh: Resolver error: Error: XHR failedscode错误_阿伟跑呀的博客-CSDN博客 添加好后点击左上角的加号&#xff0…

【Python机器学习】实验16 卷积、下采样、经典卷积网络

文章目录 卷积、下采样、经典卷积网络1. 对图像进行卷积处理2. 池化3. VGGNET4. 采用预训练的Resnet实现猫狗识别 TensorFlow2.2基本应用5. 使用深度学习进行手写数字识别 卷积、下采样、经典卷积网络 1. 对图像进行卷积处理 import cv2 path data\instance\p67.jpg input_…

微信小程序picker组件的简单使用 单选

<picker mode"selector" range"{{classData}}" bindchange"bindClassChange" value"{{classIndex}}" range-key"className"><view class"picker">{{classData[classIndex].className || 请选择班级}}…

OpenGL调试时输出显存帧到图片的一些方法

1. 从帧缓存读取像素 bool GLUtils::saveRender(const std::string& tag,int w, int h,const char* func_name, int line){std

Linux 线程同步——条件变量

一、条件变量的概念 如果说互斥锁是用于同步线程对共享数据的访问的话&#xff0c;那么条件变量则是用于在线程之间同步共享数据的值。条件变量提供了一种线程间的通知机制&#xff1a;当某个共享数据达到某个值的时候&#xff0c;唤醒等待这个共享数据的线程。如下图所示&…

vue3中使用第三方插件mitt实现任意组件通讯

vue3中使用第三方插件mitt实现任意组件通讯 组件通讯是vue3组合式开发的核心之一&#xff0c;现在我在写代码时&#xff0c;一个组件的代码超过了200行&#xff0c;基本都会拆分组件。组件拆分后&#xff0c;组件之间的通讯就很重要&#xff0c;总结了一下&#xff0c;目前有这…

【SQL应知应会】索引(三)• MySQL版:聚簇索引与非聚簇索引;查看索引与删除索引;索引方法

欢迎来到爱书不爱输的程序猿的博客, 本博客致力于知识分享&#xff0c;与更多的人进行学习交流 本文收录于SQL应知应会专栏,本专栏主要用于记录对于数据库的一些学习&#xff0c;有基础也有进阶&#xff0c;有MySQL也有Oracle 索引 • MySQL版 前言一、索引1.简介2.索引类型之逻…

【李沐】3.2线性回归从0开始实现

%matplotlib inline import random import torch from d2l import torch as d2l1、生成数据集&#xff1a; 看最后的效果&#xff0c;用正态分布弄了一些噪音 上面这个具体实现可以看书&#xff0c;又想了想还是上代码把&#xff1a; 按照上面生成噪声&#xff0c;其中最后那…

利用大模型反馈故障的解决方案

背景 观测云有两个错误巡检脚本&#xff0c;RUM 错误巡检和 APM 错误巡检&#xff0c;代码均开源。 错误巡检的主要目的是发现新出现的错误消息(error stack)&#xff0c;原有的巡检在上报了相应的事件报告后&#xff0c;只是定位了问题&#xff0c;并没有给出合适的解决方案。…

C++(3)C++对C的扩展Extension

类型增强 1、类型更加严格 不初始化&#xff0c;无法通过编译&#xff1b;C不初始化&#xff0c;则随机赋值 #include <iostream> #include <stdlib.h>int main() {const int a 100; //真正的const,无法修改 // int *p &a; 报错const int *p…

Pandas基础知识

文章目录 Pandas的数据结构Series --- 由数据和索引组成&#xff08;索引&#xff08;index&#xff09;在左&#xff0c;数据&#xff08;values&#xff09;在右&#xff09;DataFrame --- 索引包括行索引和列索引&#xff0c;每列数据可以是不同的类型 Pandas的索引操作 ---…

SpringMVC拦截器学习笔记

SpringMVC拦截器 拦截器知识 拦截器(Interceptor)用于对URL请求进行前置/后置过滤 Interceptor与Filter用途相似但实现方式不同 Interceptor底层就是基于Spring AOP面向切面编程实现 拦截器开发流程 Maven添加依赖包servlet-api <dependency><groupId>javax.se…

C++学习之九

1)普通类的成员函数模板 class A { public:template<typename T> //类的成员函数模板,//成员函数模板和函数模板长得样子一样&#xff01;void func(T tmp); };template<typename T> void A::func(T tmp) {cout << tmp << endl; }int main() {A a;a.…

nginx代理webSocket链接,webSocket频繁断开重连

一、场景 1、使用nginx代理webSocket链接&#xff0c;消息发送和接收都是正常的&#xff0c;但webSocket链接会频繁断开重连 2、如果不使用nginx代理则一切正常 3、程序没有做webSocket心跳处理 如下图 二、nginx代理配置 upstream cloud_ass {#ip_hash;server 192.168.1.…

2023年国赛数学建模思路 - 案例:随机森林

文章目录 1 什么是随机森林&#xff1f;2 随机深林构造流程3 随机森林的优缺点3.1 优点3.2 缺点 4 随机深林算法实现 建模资料 ## 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 什么是随机森林&#xff…

leetcode做题笔记95. 不同的二叉搜索树 II

给你一个整数 n &#xff0c;请你生成并返回所有由 n 个节点组成且节点值从 1 到 n 互不相同的不同 二叉搜索树 。可以按 任意顺序 返回答案。 思路一&#xff1a;递归 struct TreeNode ** partition(int start, int end, int* returnSize){*returnSize 0;int size 32;stru…

从2023年世界机器人大会发现机器人新趋势

机器人零部件为何成2023年世界机器人大会关注热门&#xff1f; 在原先&#xff0c;机器人的三大核心零部件是控制系统中的控制器、驱动系统中的伺服电机和机械系统中的精密减速器。如今&#xff0c;机器人的主体框架结构已经落实&#xff0c;更多机器人已经开始深入到各类场景中…