Prompt本质解密及Evaluation实战(一)

一、基于evaluation的prompt使用解析

基于大模型的应用评估与传统应用程序的评估不太一样,特别是基于GPT系列或者生成式语言模型,因为模型生成的内容与传统意义上所说的内容或者标签不太一样。

       以下是借用了ChatGPT官方的evaluation指南提出的对结果的具体的评估步骤:

       Compare the factual content of the submitted answer with the context. \

I      gnore any differences in style, grammar, or punctuation.

Answer the following questions:

    - Is the Assistant response based only on the context provided? (Y or N)

    - Does the answer include information that is not provided in the context? (Y or N)

    - Is there any disagreement between the response and the context? (Y or N)

    - Count how many questions the user asked. (output a number)

    - For each question that the user asked, is there a corresponding answer to it?

      Question 1: (Y or N)

      Question 2: (Y or N)

      ...

      Question N: (Y or N)

- Of the number of questions asked, how many of these questions were addressed by the answer? (output a number)

所谓的factual content是指显性表达出来的(有明确文字说明的)内容,另外需要忽略掉写作风格,语法,标点符号等带来的差异,因为大多数情况下不同的用户表达同样的意思会有差异,这对于比较模型生成结果和你指定的正确答案来说很重要,否则会失去语言的灵活性。” Answer the following questions”部分说明了评估必须经过的步骤,另外也说明了不能简单地说“Y”或者“N”,而是需要给出一些中间的reasoning process或者说intermediate steps,这样的设计很具有技巧,考验你对业务的理解能力,包括对数据的理解能力以及对模型的理解能力等等。

在下面这个评估方法中,有用户的信息,上下文的信息以及对话机器人返回的信息,其中system_message如下:

You are an assistant that evaluates how well the customer service agent \

answers a user question by looking at the context that the customer service \

agent is using to generate its response.

一般来说,系统级别的信息就是上下文(context),从模型的角度来说,所有输入的东西都是在context的支配下工作的。

上面这个方法基于传入的system_message和user_message,调用方法get_completion_from_messages获得返回的response:

调用方法并打印response如下:

二、关于prompt内部工作机制

       训练GPT系列大模型时,一个基本的能力是预测下一个词(word),那模型为什么能根据我们提供的prompt做出响应?譬如GPT-3,它是根据前面的内容来产出下一个word,前面的内容你都可以认为是prompt。

这个问题的本质是GPT-3/GPT-4是如何训练的,在已有的一个基础的大模型(base LLM)的前提条件下,会经历以下几个核心步骤:

-以一问一答的方式提供样例数据给这个base LLM

-由data contractor人工检查LLM的输出(即human-rating操作),看什么是有用的,什么是没用的

-使用RLHF来调整模型对产生更高rating的输出增加概率

经过上述步骤后会导致我们输入一个prompt(譬如上面说到的evalution使用的看起来有点复杂的prompt)后,会产生相应的结果。

用户在不断地与对话机器人进行交互时,对话机器人在产出结果时至少要考虑两个层面的东西:一是用户输入的内容,二是系统的设定。

Prompt的使用形式有如下几种:

-问答的形式,给一个输入,返回一个输出

-Chain of Thought(CoT)

-Self Consistency with CoT(CoT-SC)

-Tree of Thoughts(ToT),根据用户的输入产生一个树状结构,每一层表示针对上面的节点的prompt或者step产生的结果,譬如第一层针对输入可能会产生不同的结果,然后层层递推,其中存在一个evaluation system,就是判断哪个路径是最相关或者说产出的结果最能够完成用户指定的问题或者任务。

三、从一篇论文来剖析prompt

我们需要思考在一个prompt中,有哪些因素能够影响到一个prompt的功能,另外也要考虑如何使一个prompt最小化,因为这涉及到tokens的使用数量,另外如果信息太多也会干扰到模型对信息的“理解”(这里的“理解”指的是一种形式上的理解,本质上来说模型是无法像人类一样真正理解我们提供的信息的)。

下面这篇论文很重要,提出了几个核心的论述:

-在输入的一个prompt中,“factual patterns”的存在对于CoT的成功来说并不重要

-对于模型来说,中间的步骤(intermediate steps)会作为灯塔信号,让模型参照用户输入中的符号(symbols)构成的patterns来产出结果,模型表现出的仅仅是一种形式上的推理论证

-模型在训练时会获得commonsense knowledge and meaning,从而帮助模型在用户输入的文本形式的prompt中找到patterns

-通过试验分析揭示了在text和patterns之间存在类似生物间相互依赖的一种关系,模型会从文本中基于常识获取patterns,patterns反过来会强化模型对任务进行形式上的理解和指导结果信息的生成

-你能够尽量去裁剪prompt,只留下关键的信息,基于常识依旧能够表达patterns,这些patterns能够指导模型“理解”prompt指定的任务来生成结果

-prompt中的符号的具体形式(exact type of symbols)不影响模型的表现

-CoT帮助模型以prompt为例来学习其中的patterns,然后为任务生成正确的tokens

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.mzph.cn/news/48738.shtml

如若内容造成侵权/违法违规/事实不符,请联系多彩编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

kali的一些使用和ms08-067、ms17-010漏洞

VM虚拟机-三种网络连接方式(桥接、NAT、仅主机模式) 虚拟机网络连接 一、Bridged(桥接) 二、NAT(网络地址转换) 三、Host-Only(仅主机) 在vmware软件中,选项栏的“编…

[计算机入门] 窗口操作

3.3 窗口操作 之前介绍过如何调整窗口大小。接下来介绍如何对窗口进行排布等操作。 当我们想要将某个窗口调整到整个屏幕的左边或者右边(占整个屏幕的一半),可以在选中并激活窗口后,按Win ←/→ 进行调整。 此时,还可以通过Win↑/↓调整该…

docker版jxTMS使用指南:使用jxTMS提供数据

本文讲解了如何jxTMS的数据访问框架,整个系列的文章请查看:docker版jxTMS使用指南:4.4版升级内容 docker版本的使用,请查看:docker版jxTMS使用指南 4.0版jxTMS的说明,请查看:4.0版升级内容 4…

Python 合并多个 PDF 文件并建立书签目录

今天在用 WPS 的 PDF 工具合并多个文件的时候,非常不给力,居然卡死了好几次,什么毛病?! 心里想,就这么点儿功能,居然收了我会员费都实现不了?不是吧…… 只能自己来了,…

Android6:片段和导航

创建项目Secret Message strings.xml <resources><string name"app_name">Secret Message</string><string name"welcome_text">Welcome to the Secret Message app!Use this app to encrypt a secret message.Click on the Star…

maven 从官网下载指定版本

1. 进入官网下载页面 Maven – Download Apache Maven 点击下图所示链接 2. 进入文件页&#xff0c;选择需要的版本 3. 选binaries 4. 选文件&#xff0c;下载即可

JMETER基本原理

Jmeter基本原理是建立一个线程池&#xff0c;多线程运行取样器产生大量负载&#xff0c;在运行过程中通过断言来验证结果的正确性&#xff0c;可以通过监听来记录测试结果&#xff1b; JMETER是运行在JVM虚拟机上的&#xff0c;每个进程的开销比loadrunner的进程开销大&#x…

Windows系统下安装Nginx以及相关端口问题的解决方法详解

系列文章目录 安装Tomac服务器——安装步骤以及易出现问题的解决方法 文章目录 系列文章目录 一 背景 二 安装 2.1 下载Nginx 2.2 选择Nginx版本 2.3 解压Nginx 三 Nginx的使用 3.1 Nginx基本目录 3.2查看80端口是否被占用 3.3 Nginx启动方式 第一种&#xff1a;双…

飞天使-k8s基础组件分析-控制器

文章目录 控制器含义解释pod的标签与注释ReplicaControllerReplicaSetDeploymentsDaemonSetJobCronjob参考文档 控制器含义解释 空调遥控器知道吧ReplicationController: ReplicationController确保在任何时候都运行指定数量的pod副本。换句话说&#xff0c;一个ReplicationCo…

【Rust】Rust学习 第十七章Rust 的面向对象特性

面向对象编程&#xff08;Object-Oriented Programming&#xff0c;OOP&#xff09;是一种模式化编程方式。对象&#xff08;Object&#xff09;来源于 20 世纪 60 年代的 Simula 编程语言。这些对象影响了 Alan Kay 的编程架构中对象之间的消息传递。他在 1967 年创造了 面向对…

vim 常见操作

Vim 工作模式 1、vim 三种基本的工作模式 vim有三种基本的工作模式&#xff0c;分别为&#xff1a;命令模式、末行模式、编辑模式。关于这三种工作模式的介绍&#xff0c;请见下文。 1.1、命令模式 使用vim打开文件之后&#xff0c;首先进入命令模式&#xff0c;它是vim编辑…

C#,数值计算——用算法加速序列的收敛的计算方法与源程序

算法对序列的收敛加速。初始化方式使用参数nmax调用构造函数&#xff0c;nmax是要求和的项数&#xff0c;以及eps&#xff0c;即所需的精度。然后连续调用next函数&#xff0c;参数为next部分和序列的。序列极限的当前估计值为next返回。检测到收敛设置标志cnvgd。 using Syst…

C# 设置、获取程序,产品版本号

右键&#xff0c;程序属性。打开“程序集信息” 选择需要设置的版本信息。下面的代码&#xff0c;获取不同的设置内容。 string 其他 Assembly.GetExecutingAssembly().FullName; string 程序集版本 Assembly.GetExecutingAssembly().G…

优化学习体验是在线培训系统的关键功能

在线培训系统是当今教育领域的一个重要工具&#xff0c;帮助学生和教师提高学习效果和教学质量。一个功能完善的在线培训系统可以提供丰富多样的学习资源和交互方式&#xff0c;以满足不同学生的需求。 个性化学习路径 每个学生的学习需求和进度都不同。通过个性化学习路径功…

考研C语言进阶题库——更新41-50题

目录 41.编写程序要求输出整数a和b若a和b的平方和大于100&#xff0c;则输出a和b的平方和&#xff0c;否则输出a和b的和 42.现代数学的著名证明之一是Georg Cantor证明了有理数是可枚举的。他是用下面这一张表来证明这一命题的&#xff1a;第一项是1/1&#xff0c;第二项是是…

排序算法之详解冒泡排序

引入 冒泡排序顾名思义&#xff0c;就是像冒泡一样&#xff0c;泡泡在水里慢慢升上来&#xff0c;由小变大。虽然冒泡排序和冒泡并不完全一样&#xff0c;但却可以帮助我们理解冒泡排序。 思路 一组无序的数组&#xff0c;要求我们从小到大排列 我们可以先将最大的元素放在数组…

CSS如何将浏览器文字设置小于12px

CSS如何将浏览器文字设置小于12px 使用transform: scale进行缩放 transform: scale(0.8);<div><p class"first">第一段文字</p><p class"second">第二段文字</p> </div>.first {font-size: 12px; }.second {font-si…

继承中的构造与析构

思考 如何初始化父类成员&#xff1f; 父类构造函数和子类构造函数有什么关系&#xff1f; 子类对象的构造 子类中可以定义构造函数 子类构造函数 必须对继承而来的成员进行初始化 直接通过初始化列表或者赋值的方式进行初始化调用父类构造函数进行初始化 父类构造函数在子…

数据分析实战│价格预测挑战【文末赠书】

文本分析是指对文本信息的表示及特征项的选取&#xff0c;商品文本的描述能够反映特定立场、观点、价值和利益。考虑到网上海量的商品数量&#xff0c;对产品的定价难度很大&#xff0c;因此可以使用商品描述帮助商户定价。比如&#xff0c;服装具有较强的季节性价格趋势&#…

jmeter-results-detail-report_new.xsl文件设置dateReport

<!-- Defined parameters (overrideable) <td bgcolor"#ff00ff"> --> <xsl:param name"showData" select"y"/> <xsl:param name"titleReport" select"测试报告"/> <xsl:param name&…